Tailoring Mesopores and Nitrogen Groups of Carbon Nanofibers for Polysulfide Entrapment in Lithium–Sulfur Batteries

In the current work, we combined different physical and chemical modifications of carbon nanofibers through the creation of micro‐, meso‐, and macro‐pores as well as the incorporation of nitrogen groups in cyclic polyacrylonitrile (CPAN) using gas‐assisted electrospinning and air‐con-trolled electro...

Full description

Bibliographic Details
Main Authors: An, M. (Author), Joo, Y.L (Author), Lee, J.H (Author), Lee, S.G (Author), Sarkar, S. (Author), Won, J.S (Author), Zhang, R. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03079nam a2200529Ia 4500
001 10.3390-polym14071342
008 220425s2022 CNT 000 0 und d
020 |a 20734360 (ISSN) 
245 1 0 |a Tailoring Mesopores and Nitrogen Groups of Carbon Nanofibers for Polysulfide Entrapment in Lithium–Sulfur Batteries 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/polym14071342 
520 3 |a In the current work, we combined different physical and chemical modifications of carbon nanofibers through the creation of micro‐, meso‐, and macro‐pores as well as the incorporation of nitrogen groups in cyclic polyacrylonitrile (CPAN) using gas‐assisted electrospinning and air‐con-trolled electrospray processes. We incorporated them into electrode and interlayer in Li–Sulfur bat-teries. First, we controlled pore size and distributions in mesoporous carbon fibers (mpCNF) via adding polymethyl methacrylate as a sacrificial polymer to the polyacrylonitrile carbon precursor, followed by varying activation conditions. Secondly, nitrogen groups were introduced via cycliza-tion of PAN on mesoporous carbon nanofibers (mpCPAN). We compared the synergistic effects of all these features in cathode substrate and interlayer on the performance Li–Sulfur batteries and used various characterization tools to understand them. Our results revealed that coating CPAN on both mesoporous carbon cathode and interlayer greatly enhanced the rate capability and capacity retention, leading to the capacity of 1000 mAh/g at 2 C and 1200 mAh/g at 0.5 C with the capability retention of 88% after 100 cycles. The presence of nitrogen groups and mesopores in both cathodes and interlayers resulted in more effective polysulfide confinement and also show more promise for higher loading systems. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Air‐controled electrospray 
650 0 4 |a air‐controlled electrospray 
650 0 4 |a Carbon nanofibers 
650 0 4 |a Carbon nanofibres 
650 0 4 |a Cathodes 
650 0 4 |a Chemical modification 
650 0 4 |a Electrospinning 
650 0 4 |a Electrosprays 
650 0 4 |a gas assisted electrospinning 
650 0 4 |a Gas assisted electrospinning 
650 0 4 |a Lithium 
650 0 4 |a Lithium batteries 
650 0 4 |a Lithium sulfur batteries 
650 0 4 |a Lithium/sulfur batteries 
650 0 4 |a Lithium–Sulfur batteries 
650 0 4 |a Mesopore 
650 0 4 |a mesoporous carbon nanofiber 
650 0 4 |a Mesoporous carbon nanofibers 
650 0 4 |a Mesoporous materials 
650 0 4 |a nitrogen doping 
650 0 4 |a Nitrogen group 
650 0 4 |a Nitrogen-doping 
650 0 4 |a Polyacrylonitriles 
650 0 4 |a Polymethyl methacrylates 
650 0 4 |a Polysulphides 
650 0 4 |a Pore size 
650 0 4 |a Sulfur 
700 1 |a An, M.  |e author 
700 1 |a Joo, Y.L.  |e author 
700 1 |a Lee, J.H.  |e author 
700 1 |a Lee, S.G.  |e author 
700 1 |a Sarkar, S.  |e author 
700 1 |a Won, J.S.  |e author 
700 1 |a Zhang, R.  |e author 
773 |t Polymers