|
|
|
|
LEADER |
03037nam a2200433Ia 4500 |
001 |
10.3390-mi13071056 |
008 |
220718s2022 CNT 000 0 und d |
020 |
|
|
|a 2072666X (ISSN)
|
245 |
1 |
0 |
|a Design of a Radial Vortex-Based Spin-Torque Nano-Oscillator in a Strain-Mediated Multiferroic Nanostructure for BFSK/BASK Applications
|
260 |
|
0 |
|b MDPI
|c 2022
|
856 |
|
|
|z View Fulltext in Publisher
|u https://doi.org/10.3390/mi13071056
|
520 |
3 |
|
|a Radial vortex-based spin torque nano-oscillators (RV-STNOs) have attracted extensive attention as potential nano microwave signal generators due to their advantages over other topological states, such as their higher oscillation, higher microwave power, and lower power consumption. However, the current driving the oscillation frequency of the STNOs must be limited in a small range of adjustment, which means less data transmission channels. In this paper, a new RV-STNO system is proposed with a multiferroic nanostructure, which consists of an ultrathin magnetic multilayer and a piezoelectric layer. Phase diagrams of oscillation frequency and amplitude with respect to piezostrain and current are obtained through micromagnetic simulation. The results show that the threshold current density of −4000-ppm compressive strain-assisted RV-STNOs is reduced from 2 × 109 A/m2 to 2 × 108 A/m2, showing one order of magnitude lower than that of conventional cur-rent-driven nano-oscillators. Meanwhile, the range of oscillation frequency adjustment is significantly enhanced, and there is an increased amplitude at the low oscillation point. Moreover, a promising digital binary frequency-shift key (BFSK) and binary amplitude-shift key (BASK) modulation technique is proposed under the combined action of current pulse and piezostrain pulse. They can transmit bit signals and show good modulation characteristics with a minimal transient state. These results provide a reference for developing the next generation of spintronic nano-oscillators with a wide frequency range and low power consumption, showing potential for future wireless communication applications. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
|
650 |
0 |
4 |
|a BASK
|
650 |
0 |
4 |
|a BFSK
|
650 |
0 |
4 |
|a Binary amplitude-shift key
|
650 |
0 |
4 |
|a Binary frequency
|
650 |
0 |
4 |
|a Binary frequency-shift key
|
650 |
0 |
4 |
|a Electric power utilization
|
650 |
0 |
4 |
|a Frequency shift
|
650 |
0 |
4 |
|a Microwave oscillators
|
650 |
0 |
4 |
|a multiferroic
|
650 |
0 |
4 |
|a Multiferroics
|
650 |
0 |
4 |
|a Nano-oscillator
|
650 |
0 |
4 |
|a Nanostructures
|
650 |
0 |
4 |
|a Oscillation frequency
|
650 |
0 |
4 |
|a radial vortex
|
650 |
0 |
4 |
|a Radial vortex
|
650 |
0 |
4 |
|a Spin torque
|
650 |
0 |
4 |
|a Spin torque nano-oscillation
|
650 |
0 |
4 |
|a spin torque nano-oscillations
|
650 |
0 |
4 |
|a Vortex flow
|
700 |
1 |
|
|a Hu, H.
|e author
|
700 |
1 |
|
|a Li, Y.
|e author
|
700 |
1 |
|
|a Qiu, Y.
|e author
|
700 |
1 |
|
|a Yu, G.
|e author
|
700 |
1 |
|
|a Zhou, H.
|e author
|
700 |
1 |
|
|a Zhu, H.
|e author
|
700 |
1 |
|
|a Zhu, M.
|e author
|
773 |
|
|
|t Micromachines
|