q-Fractional Langevin Differential Equation with q-Fractional Integral Conditions

The major goal of this manuscript is to investigate the existence, uniqueness, and stability of a q-fractional Langevin differential equation with q-fractional integral conditions. We demonstrate the existence and uniqueness of the solution to the proposed q-fractional Langevin differential equation...

Full description

Bibliographic Details
Main Authors: Ben Moussa, S. (Author), Khalid, K.H (Author), Wang, W. (Author), Ye, J. (Author), Zada, A. (Author)
Format: Article
Language:English
Published: MDPI 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 01431nam a2200253Ia 4500
001 10.3390-math11092132
008 230529s2023 CNT 000 0 und d
020 |a 22277390 (ISSN) 
245 1 0 |a q-Fractional Langevin Differential Equation with q-Fractional Integral Conditions 
260 0 |b MDPI  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/math11092132 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159157299&doi=10.3390%2fmath11092132&partnerID=40&md5=66bcfbbc4bea4529061d71ea146cef22 
520 3 |a The major goal of this manuscript is to investigate the existence, uniqueness, and stability of a q-fractional Langevin differential equation with q-fractional integral conditions. We demonstrate the existence and uniqueness of the solution to the proposed q-fractional Langevin differential equation using the Banach contraction principle and Schaefer’s fixed-point theorem. We also elaborate on different kinds of Ulam stability. The theoretical outcomes are verified by examples. © 2023 by the authors. 
650 0 4 |a Caputo derivative 
650 0 4 |a fractional q-differential equation 
650 0 4 |a green function 
650 0 4 |a Langevin equations 
650 0 4 |a Ulam stability 
700 1 0 |a Ben Moussa, S.  |e author 
700 1 0 |a Khalid, K.H.  |e author 
700 1 0 |a Wang, W.  |e author 
700 1 0 |a Ye, J.  |e author 
700 1 0 |a Zada, A.  |e author 
773 |t Mathematics