The Existence Problems of Solutions for a Class of Differential Variational–Hemivariational Inequality Problems

In this work, we used reflexive Banach spaces to study the differential variational—hemivariational inequality problems with constraints. We established a sequence of perturbed differential variational–hemivariational inequality problems with perturbed constraints and penalty coefficients. Then, for...

Full description

Bibliographic Details
Main Authors: Ahmadini, A.A.H (Author), Chang, S.-S (Author), Salahuddin (Author), Wang, G. (Author), Wang, L. (Author)
Format: Article
Language:English
Published: MDPI 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 01809nam a2200277Ia 4500
001 10.3390-math11092066
008 230529s2023 CNT 000 0 und d
020 |a 22277390 (ISSN) 
245 1 0 |a The Existence Problems of Solutions for a Class of Differential Variational–Hemivariational Inequality Problems 
260 0 |b MDPI  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/math11092066 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159225417&doi=10.3390%2fmath11092066&partnerID=40&md5=702c402800cfaac4b847ad144a2e57b8 
520 3 |a In this work, we used reflexive Banach spaces to study the differential variational—hemivariational inequality problems with constraints. We established a sequence of perturbed differential variational–hemivariational inequality problems with perturbed constraints and penalty coefficients. Then, for each perturbed inequality, we proved the unique solvability and convergence of the solutions to the problems. Following that, we proposed a mathematical model for a viscoelastic rod in unilateral contact equilibrium, where the unknowns were the displacement field and the history of the deformation. We used the abstract penalty method in the analysis of this inequality and provided the corresponding mechanical interpretations. © 2023 by the authors. 
650 0 4 |a differential variational inequality 
650 0 4 |a inverse strongly monotonicity 
650 0 4 |a Lipschitz continuity 
650 0 4 |a Mosco convergence 
650 0 4 |a penalty method 
650 0 4 |a unilateral constraints 
650 0 4 |a viscoelastic rod 
700 1 0 |a Ahmadini, A.A.H.  |e author 
700 1 0 |a Chang, S.-S.  |e author 
700 1 0 |a Salahuddin  |e author 
700 1 0 |a Wang, G.  |e author 
700 1 0 |a Wang, L.  |e author 
773 |t Mathematics