Variable Besov–Morrey Spaces Associated with Operators

Let (Formula presented.) be a space of homogenous type and L be a non-negative self-adjoint operator on (Formula presented.) with heat kernels satisfying Gaussian upper bounds. In this paper, we introduce the variable Besov–Morrey space associated with the operator L and prove that this space can be...

Full description

Bibliographic Details
Main Author: Saibi, K. (Author)
Format: Article
Language:English
Published: MDPI 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 01209nam a2200217Ia 4500
001 10.3390-math11092038
008 230529s2023 CNT 000 0 und d
020 |a 22277390 (ISSN) 
245 1 0 |a Variable Besov–Morrey Spaces Associated with Operators 
260 0 |b MDPI  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/math11092038 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159190426&doi=10.3390%2fmath11092038&partnerID=40&md5=059dba8d5d8d596a6fe98009b3ed8538 
520 3 |a Let (Formula presented.) be a space of homogenous type and L be a non-negative self-adjoint operator on (Formula presented.) with heat kernels satisfying Gaussian upper bounds. In this paper, we introduce the variable Besov–Morrey space associated with the operator L and prove that this space can be characterized via the Peetre maximal functions. Then, we establish its atomic decomposition. © 2023 by the author. 
650 0 4 |a atomic characterizations 
650 0 4 |a Besov–Morrey spaces 
650 0 4 |a heat kernel 
650 0 4 |a maximal characterization 
650 0 4 |a metric measure 
650 0 4 |a variable exponents 
700 1 0 |a Saibi, K.  |e author 
773 |t Mathematics