Natural Lacunae Method and Schatten–Von Neumann Classes of the Convergence Exponent

Our first aim is to clarify the results obtained by Lidskii devoted to the decomposition on the root vector system of the non-selfadjoint operator. We use a technique of the entire function theory and introduce a so-called Schatten–von Neumann class of the convergence exponent. Considering strictly...

Full description

Bibliographic Details
Main Author: Kukushkin, M.V (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01243nam a2200193Ia 4500
001 10.3390-math10132237
008 220718s2022 CNT 000 0 und d
020 |a 22277390 (ISSN) 
245 1 0 |a Natural Lacunae Method and Schatten–Von Neumann Classes of the Convergence Exponent 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/math10132237 
520 3 |a Our first aim is to clarify the results obtained by Lidskii devoted to the decomposition on the root vector system of the non-selfadjoint operator. We use a technique of the entire function theory and introduce a so-called Schatten–von Neumann class of the convergence exponent. Considering strictly accretive operators satisfying special conditions formulated in terms of the norm, we construct a sequence of contours of the power type that contrasts the results by Lidskii, where a sequence of contours of the exponential type was used. © 2022 by the author. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Abel–Lidskii basis property 
650 0 4 |a convergence exponent 
650 0 4 |a counting function 
650 0 4 |a Schatten–von Neumann class 
650 0 4 |a strictly accretive operator 
700 1 |a Kukushkin, M.V.  |e author 
773 |t Mathematics