Bézier-Summation-Integral-Type Operators That Include Pólya–Eggenberger Distribution

We define the summation-integral-type operators involving the ideas of Pólya–Eggenberger distribution and Bézier basis functions, and study some of their basic approximation properties. In addition, by means of the Ditzian–Totik modulus of smoothness, we study a direct theorem as well as a quantit...

Full description

Bibliographic Details
Main Authors: Alotaibi, A. (Author), Kajla, A. (Author), Mohiuddine, S.A (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01229nam a2200205Ia 4500
001 10.3390-math10132222
008 220718s2022 CNT 000 0 und d
020 |a 22277390 (ISSN) 
245 1 0 |a Bézier-Summation-Integral-Type Operators That Include Pólya–Eggenberger Distribution 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/math10132222 
520 3 |a We define the summation-integral-type operators involving the ideas of Pólya–Eggenberger distribution and Bézier basis functions, and study some of their basic approximation properties. In addition, by means of the Ditzian–Totik modulus of smoothness, we study a direct theorem as well as a quantitative Voronovskaja-type theorem for our newly constructed operators. Moreover, we investigate the approximation of functions with derivatives of bounded variation (DBV) of the aforesaid operators. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Bézier curves 
650 0 4 |a Pólya–Eggenberger distribution 
650 0 4 |a rate of convergence 
650 0 4 |a Stancu operators 
700 1 |a Alotaibi, A.  |e author 
700 1 |a Kajla, A.  |e author 
700 1 |a Mohiuddine, S.A.  |e author 
773 |t Mathematics