Schrödinger Harmonic Functions with Morrey Traces on Dirichlet Metric Measure Spaces

Assume that (X, d, µ) is a metric measure space that satisfies a Q-doubling condition with Q > 1 and supports an L2-Poincaré inequality. Let L be a nonnegative operator generalized by a Dirichlet form E and V be a Muckenhoupt weight belonging to a reverse Hölder class RHq (X) for some q ≥ (Q +...

Full description

Bibliographic Details
Main Authors: Li, B. (Author), Shen, T. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01574nam a2200193Ia 4500
001 10.3390-math10071112
008 220425s2022 CNT 000 0 und d
020 |a 22277390 (ISSN) 
245 1 0 |a Schrödinger Harmonic Functions with Morrey Traces on Dirichlet Metric Measure Spaces 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/math10071112 
520 3 |a Assume that (X, d, µ) is a metric measure space that satisfies a Q-doubling condition with Q > 1 and supports an L2-Poincaré inequality. Let L be a nonnegative operator generalized by a Dirichlet form E and V be a Muckenhoupt weight belonging to a reverse Hölder class RHq (X) for some q ≥ (Q + 1)/2. In this paper, we consider the Dirichlet problem for the Schrödinger equation −∂2tu+Lu+Vu= 0 on the upper half-spaceX ×R+, which has f as its the boundary value on X. We show that a solution u of the Schrödinger equation satisfies the Carleson type condition if and only if there exists a square Morrey function f such that u can be expressed by the Poisson integral of f. This extends the results of Song-Tian-Yan [Acta Math. Sin. (Engl. Ser.) 34 (2018), 787-800] from the Euclidean space RQ to the metric measure space X and improves the reverse Hölder index from q ≥ Q to q ≥ (Q + 1)/2. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Dirichlet problem 
650 0 4 |a metric measure space 
650 0 4 |a Morrey space 
650 0 4 |a Schrödinger equation 
700 1 |a Li, B.  |e author 
700 1 |a Shen, T.  |e author 
773 |t Mathematics