Parallel-Disk Viscometry of a Viscoplastic Hydrogel: Yield Stress and Other Parameters of Shear Viscosity and Wall Slip

The rheology, i.e., the flow and deformation properties, of hydrogels is generally a very important consideration for their functionality. However, the accurate characterization of their rheological material functions is handicapped by their ubiquitous viscoplasticity and associated wall slip behavi...

Full description

Bibliographic Details
Main Authors: Kalyon, D.M (Author), Quan, L. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
gel
Online Access:View Fulltext in Publisher
LEADER 02836nam a2200253Ia 4500
001 10.3390-gels8040230
008 220510s2022 CNT 000 0 und d
020 |a 23102861 (ISSN) 
245 1 0 |a Parallel-Disk Viscometry of a Viscoplastic Hydrogel: Yield Stress and Other Parameters of Shear Viscosity and Wall Slip 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/gels8040230 
520 3 |a The rheology, i.e., the flow and deformation properties, of hydrogels is generally a very important consideration for their functionality. However, the accurate characterization of their rheological material functions is handicapped by their ubiquitous viscoplasticity and associated wall slip behavior. Here a parallel-disk viscometer was used to characterize the shear viscosity and wall slip behavior of a crosslinked poly(acrylic acid) (PAA) carbomer hydrogel (specifically Carbopol® at 0.12% by weight in water). It was demonstrated that parallel-disk viscometry, i.e., the steady torsional flow in between two parallel disks, can be used to unambiguously determine the yield stress and other parameters of viscoplastic constitutive equations and wall slip behavior. It was specifically shown that torque versus rotational speed information, obtained from parallel-disk viscometry, was sufficient to determine the yield stress of a viscoplastic hydrogel. Additional gap-dependent data from parallel-disk viscometry could then be used to characterize the other parameters of the shear viscosity and wall slip behavior of the hydrogel. To investigate the accuracy of the parameters of shear viscosity and apparent wall slip that were determined, the data were used to calculate the torque values and the velocity distributions (using the lubrication assumption and parallel plate analogy) under different flow conditions. The calculated torques and velocity distributions of the hydrogel agreed very well with experimental data collected by Medina-Bañuelos et al., 2021, suggesting that the methodologies demonstrated here provide the means necessary to understand in detail the steady flow and deformation behavior of hydrogels. Such a detailed understanding of the viscoplastic nature and wall slip behavior of hydrogels can then be used to design and develop novel hydrogels with a wider range of applications in the medical and other industrial areas, and for finding optimum conditions for their processing and manufacturing. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a continuous deformation 
650 0 4 |a gel 
650 0 4 |a hydrogel 
650 0 4 |a microgel 
650 0 4 |a parallel disk 
650 0 4 |a plug flow 
650 0 4 |a viscometry 
650 0 4 |a viscoplastic 
650 0 4 |a wall slip 
700 1 |a Kalyon, D.M.  |e author 
700 1 |a Quan, L.  |e author 
773 |t Gels