Numerical Modeling and Simulation of the Solid Oxide Cell Stacks and Metal Interconnect Oxidation with OpenFOAM

Solid oxide cells are capable of efficiently converting various chemical energy carriers to electricity and vice versa. The urgent challenge nowadays is the faster degradation rate compared with other fuel cell/electrolyzer technologies. To understand the degradation mechanisms, simulation of a soli...

Full description

Bibliographic Details
Main Authors: Eichel, R.-A (Author), Kunz, F. (Author), Peters, R. (Author), Schäfer, D. (Author), Yu, S. (Author), Zhang, S. (Author)
Format: Article
Language:English
Published: MDPI 2023
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02835nam a2200469Ia 4500
001 10.3390-en16093827
008 230526s2023 CNT 000 0 und d
020 |a 19961073 (ISSN) 
245 1 0 |a Numerical Modeling and Simulation of the Solid Oxide Cell Stacks and Metal Interconnect Oxidation with OpenFOAM 
260 0 |b MDPI  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/en16093827 
520 3 |a Solid oxide cells are capable of efficiently converting various chemical energy carriers to electricity and vice versa. The urgent challenge nowadays is the faster degradation rate compared with other fuel cell/electrolyzer technologies. To understand the degradation mechanisms, simulation of a solid oxide cell is helpful. Since most previous research developed models using commercial software, such as COMSOL and ANSYS Fluent, a gap for knowledge transfer is being gradually formed between academia and industry due to licensing issues. This paper introduces a multiphysics model, developed by a computational code, openFuelCell2. The code is implemented with an open-source library, OpenFOAM. It accounts for momentum transfer, mass transfer, electrochemical reactions and metal interconnect oxidation. The model can precisely predict I–V curves under different temperatures, fuel humidity and operation modes. Comparison between OpenFOAM and COMSOL simulations shows good agreement. The metal interconnect oxidation is modeled, which can predict the thickness of the oxide scale under different protective coatings. Simulations are conducted by assuming an ultra-thin film resistance on the rib surface. It is revealed that coatings fabricated by atmospheric plasma spraying can efficiently prevent metal interconnect oxidation, with a contribution of only 0.53 % to the total degradation rate. © 2023 by the authors. 
650 0 4 |a Atmospheric humidity 
650 0 4 |a Cell/B.E 
650 0 4 |a Cell/BE 
650 0 4 |a Cell-be 
650 0 4 |a Degradation 
650 0 4 |a Degradation rate 
650 0 4 |a Humidity control 
650 0 4 |a Mass transfer 
650 0 4 |a metal interconnect oxidation 
650 0 4 |a Metal interconnect oxidation 
650 0 4 |a Metal interconnects 
650 0 4 |a Multiphysics model 
650 0 4 |a multiphysics modeling 
650 0 4 |a Open source software 
650 0 4 |a Open systems 
650 0 4 |a OpenFOAM 
650 0 4 |a openFuelCell2 
650 0 4 |a Openfuelcell2 
650 0 4 |a Oxidation 
650 0 4 |a Protective coatings 
650 0 4 |a solid oxide cell 
650 0 4 |a Solid oxide fuel cells (SOFC) 
650 0 4 |a Solid-oxide cells 
700 1 0 |a Eichel, R.-A.  |e author 
700 1 0 |a Kunz, F.  |e author 
700 1 0 |a Peters, R.  |e author 
700 1 0 |a Schäfer, D.  |e author 
700 1 0 |a Yu, S.  |e author 
700 1 0 |a Zhang, S.  |e author 
773 |t Energies  |x 19961073 (ISSN)  |g 16 9