Generation of Synthetic CPTs with Access to Limited Geotechnical Data for Offshore Sites

The initial design phase for offshore wind farms does not require complete geotechnical mapping and individual cone penetration testing (CPT) for each expected turbine location. Instead, background information from open source studies and previous historic records for geology and seismic data are ty...

Full description

Bibliographic Details
Main Authors: Coughlan, M. (Author), Desmond, C. (Author), Malekjafarian, A. (Author), Michel, G. (Author), Pakrashi, V. (Author), Shoukat, G. (Author), Thusyanthan, I. (Author)
Format: Article
Language:English
Published: MDPI 2023
Subjects:
ANN
CPT
Online Access:View Fulltext in Publisher
LEADER 02290nam a2200457Ia 4500
001 10.3390-en16093817
008 230526s2023 CNT 000 0 und d
020 |a 19961073 (ISSN) 
245 1 0 |a Generation of Synthetic CPTs with Access to Limited Geotechnical Data for Offshore Sites 
260 0 |b MDPI  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/en16093817 
520 3 |a The initial design phase for offshore wind farms does not require complete geotechnical mapping and individual cone penetration testing (CPT) for each expected turbine location. Instead, background information from open source studies and previous historic records for geology and seismic data are typically used at this early stage to develop a preliminary ground model. This study focuses specifically on the interpolation and extrapolation of cone penetration test (CPT) data. A detailed methodology is presented for the process of using a limited number of CPTs to characterise the geotechnical behavior of an offshore site using artificial neural networks. In the presented study, the optimised neural network achieved a predictive error of (Formula presented.). Accuracy is greatest at depths of less than 10 (Formula presented.). The pitfalls of using machine learning for geospatial interpolation are explained and discussed. © 2023 by the authors. 
650 0 4 |a ANN 
650 0 4 |a ANNs 
650 0 4 |a Cone penetration testing 
650 0 4 |a CPT 
650 0 4 |a Design phase 
650 0 4 |a Geotechnical data 
650 0 4 |a Geotechnical mapping 
650 0 4 |a geotechnics 
650 0 4 |a Geotechnics 
650 0 4 |a Initial design 
650 0 4 |a Interpolation 
650 0 4 |a machine learning 
650 0 4 |a Machine learning 
650 0 4 |a Machine-learning 
650 0 4 |a Neural networks 
650 0 4 |a Offshore oil well production 
650 0 4 |a Offshore wind farms 
650 0 4 |a Offshores 
650 0 4 |a Renewable energies 
650 0 4 |a renewable energy 
650 0 4 |a Seismology 
700 1 0 |a Coughlan, M.  |e author 
700 1 0 |a Desmond, C.  |e author 
700 1 0 |a Malekjafarian, A.  |e author 
700 1 0 |a Michel, G.  |e author 
700 1 0 |a Pakrashi, V.  |e author 
700 1 0 |a Shoukat, G.  |e author 
700 1 0 |a Thusyanthan, I.  |e author 
773 |t Energies  |x 19961073 (ISSN)  |g 16 9