Experimental Investigation of the Influence of NO on a PEM Fuel Cell System and Voltage Recovery Strategies

Air contaminants can have detrimental effects on the performance and durability of proton exchange membrane (PEM) fuel cell vehicles. This research focuses on the experimental investigation of the effect of nitrogen monoxide (NO) in the cathode gas stream, which provokes a cell voltage decrease due...

Full description

Bibliographic Details
Main Authors: Brandstätter, S. (Author), Buchberger, S. (Author), Eichlseder, H. (Author), Poimer, F. (Author), Reithuber, P. (Author), Schutting, E. (Author), Trattner, A. (Author)
Format: Article
Language:English
Published: MDPI 2023
Subjects:
NO
Online Access:View Fulltext in Publisher
LEADER 02919nam a2200553Ia 4500
001 10.3390-en16093720
008 230526s2023 CNT 000 0 und d
020 |a 19961073 (ISSN) 
245 1 0 |a Experimental Investigation of the Influence of NO on a PEM Fuel Cell System and Voltage Recovery Strategies 
260 0 |b MDPI  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/en16093720 
520 3 |a Air contaminants can have detrimental effects on the performance and durability of proton exchange membrane (PEM) fuel cell vehicles. This research focuses on the experimental investigation of the effect of nitrogen monoxide (NO) in the cathode gas stream, which provokes a cell voltage decrease due to the partially reversible adsorption of NO on the platinum catalyst. The concentration and exposure time of NO in the cathode gas stream are varied at selected constant current densities and load ramps to assess the effects throughout the fuel cell system operating range. The results show the cell voltage loss in the presence of NO and reveal a near-catalyst saturation with increased injected NO mass. Additionally, several voltage recovery and mitigation strategies are introduced and discussed by presenting conclusions about the general effect of NO on a fuel cell system in operation. The most promising recovery strategy for fuel cell systems is identified, and the overall system degradation is discussed. All experiments are performed in a test bed environment on a 25 kW low-temperature fuel cell system via controlled injection of NO into the cathode gas stream. © 2023 by the authors. 
650 0 4 |a catalyst poisoning 
650 0 4 |a Catalyst poisoning 
650 0 4 |a Cathodes 
650 0 4 |a Critical operating condition 
650 0 4 |a critical operating conditions 
650 0 4 |a Fuel cell system 
650 0 4 |a Fuel systems 
650 0 4 |a Gas fuel purification 
650 0 4 |a hydrogen 
650 0 4 |a Hydrogen 
650 0 4 |a irreversible degradation 
650 0 4 |a Irreversible degradation 
650 0 4 |a mitigation strategies 
650 0 4 |a Mitigation strategy 
650 0 4 |a Molecular biology 
650 0 4 |a Nitrogen monoxide 
650 0 4 |a NO 
650 0 4 |a Operating condition 
650 0 4 |a PEM fuel cell 
650 0 4 |a Proton exchange membrane fuel cells (PEMFC) 
650 0 4 |a Proton-exchange membranes fuel cells 
650 0 4 |a Recovery 
650 0 4 |a reversible degradation 
650 0 4 |a Reversible degradation 
650 0 4 |a Temperature 
650 0 4 |a voltage loss 
650 0 4 |a Voltage loss 
650 0 4 |a voltage recovery 
650 0 4 |a Voltage recovery 
700 1 0 |a Brandstätter, S.  |e author 
700 1 0 |a Buchberger, S.  |e author 
700 1 0 |a Eichlseder, H.  |e author 
700 1 0 |a Poimer, F.  |e author 
700 1 0 |a Reithuber, P.  |e author 
700 1 0 |a Schutting, E.  |e author 
700 1 0 |a Trattner, A.  |e author 
773 |t Energies  |x 19961073 (ISSN)  |g 16 9