Decomposition-Based Multi-Classifier-Assisted Evolutionary Algorithm for Bi-Objective Optimal Wind Farm Energy Capture

With the wake effect between different wind turbines, a wind farm generally aims to achieve the maximum energy capture by implementing the optimal pitch angle and blade tip speed ratio under different wind speeds. During this process, the balance of fatigue load distribution is easily neglected beca...

Full description

Bibliographic Details
Main Authors: Gao, X. (Author), Zhang, X. (Author), Zhao, L. (Author), Zhu, H. (Author)
Format: Article
Language:English
Published: MDPI 2023
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02339nam a2200433Ia 4500
001 10.3390-en16093718
008 230526s2023 CNT 000 0 und d
020 |a 19961073 (ISSN) 
245 1 0 |a Decomposition-Based Multi-Classifier-Assisted Evolutionary Algorithm for Bi-Objective Optimal Wind Farm Energy Capture 
260 0 |b MDPI  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/en16093718 
520 3 |a With the wake effect between different wind turbines, a wind farm generally aims to achieve the maximum energy capture by implementing the optimal pitch angle and blade tip speed ratio under different wind speeds. During this process, the balance of fatigue load distribution is easily neglected because it is difficult to be considered, and, thus, a high maintenance cost results. Herein, a novel bi-objective optimal wind farm energy capture (OWFEC) is constructed via simultaneously taking the maximum power output and the balance of fatigue load distribution into account. To rapidly acquire the high-quality Pareto optimal solutions, the decomposition-based multi-classifier-assisted evolutionary algorithm is designed for the presented bi-objective OWFEC. In order to evaluate the effectiveness and performance of the proposed technique, the simulations are carried out with three different scales of wind farms, while five familiar Pareto-based meta-heuristic algorithms are introduced for performance comparison. © 2023 by the authors. 
650 0 4 |a Bi objectives 
650 0 4 |a bi-objective optimization 
650 0 4 |a Bi-objective optimization 
650 0 4 |a Electric power plant loads 
650 0 4 |a Electric utilities 
650 0 4 |a Energy capture 
650 0 4 |a Evolutionary algorithms 
650 0 4 |a Farm's energy 
650 0 4 |a fatigue load 
650 0 4 |a Fatigue load 
650 0 4 |a Fatigue loads 
650 0 4 |a Heuristic algorithms 
650 0 4 |a Multi-classifier 
650 0 4 |a Optimisations 
650 0 4 |a Pareto principle 
650 0 4 |a Pareto-based optimization 
650 0 4 |a Power quality 
650 0 4 |a wake effect 
650 0 4 |a Wake effect 
650 0 4 |a Wakes 
650 0 4 |a wind farm 
650 0 4 |a Wind farm 
700 1 0 |a Gao, X.  |e author 
700 1 0 |a Zhang, X.  |e author 
700 1 0 |a Zhao, L.  |e author 
700 1 0 |a Zhu, H.  |e author 
773 |t Energies  |x 19961073 (ISSN)  |g 16 9