Periglacial Landforms and Fluid Dynamics in the Permafrost Domain: A Case from the Taz Peninsula, West Siberia

Most of the developing oil and gas fields in Russia are located in Arctic regions and constructed on permafrost, where recent environmental changes cause multiple hazards for their infrastructure. The blowing‐up of pingos, resulting in the formation of gas emission craters, is one of the disastrous...

Full description

Bibliographic Details
Main Authors: Belonosov, A. (Author), Buddo, I. (Author), Kraev, G. (Author), Kurchatova, A. (Author), Misyurkeeva, N. (Author), Nezhdanov, A. (Author), Shelokhov, I. (Author), Smirnov, A. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03120nam a2200577Ia 4500
001 10.3390-en15082794
008 220510s2022 CNT 000 0 und d
020 |a 19961073 (ISSN) 
245 1 0 |a Periglacial Landforms and Fluid Dynamics in the Permafrost Domain: A Case from the Taz Peninsula, West Siberia 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/en15082794 
520 3 |a Most of the developing oil and gas fields in Russia are located in Arctic regions and constructed on permafrost, where recent environmental changes cause multiple hazards for their infrastructure. The blowing‐up of pingos, resulting in the formation of gas emission craters, is one of the disastrous processes associated both with these external changes and, likely, with deep sources of hydrocarbons. We traced the channels of fluid migration which link a gas features reservoirs with periglacial phenomena associated with such craters with the set of geophysical methods, including common depth point and shallow transient electromagnetic methods, on an area of a prospected gas field. We found correlated vertical anomalies of acoustic coherence and electrical resistivity associated with gas chimneys in the upper 500–600 m of the section. The thickness of the ice‐bonded permafrost acting as a seal for fluids decreased in the chimney zone, forming 25–50 m deep pockets in the permafrost base. Three pingos out of six were located above chimneys in the study area of 200 km2. Two lakes with parapets typical for craters were found. We conclude that the combination of applied methods is efficacious in terms of identifying this type of hazard and locating potentially hazardous objects in the given territory. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Chimneys 
650 0 4 |a common depth point method 
650 0 4 |a Common depth point method 
650 0 4 |a Common depth points 
650 0 4 |a fluid migration 
650 0 4 |a Fluid migration 
650 0 4 |a Gas chimney 
650 0 4 |a gas chimneys 
650 0 4 |a Gas emission crater 
650 0 4 |a gas emission craters 
650 0 4 |a Gas emissions 
650 0 4 |a Gas hazards 
650 0 4 |a Gas industry 
650 0 4 |a natural gas 
650 0 4 |a Natural gas 
650 0 4 |a Permafrost 
650 0 4 |a permafrost thickness 
650 0 4 |a Permafrost thickness 
650 0 4 |a Petroleum prospecting 
650 0 4 |a Pingo 
650 0 4 |a pingos 
650 0 4 |a Point methods 
650 0 4 |a shallow transient electromagnetic method 
650 0 4 |a Shallow transient electromagnetic method 
650 0 4 |a taliks 
650 0 4 |a Taliks 
650 0 4 |a Transient analysis 
650 0 4 |a Transient electromagnetic methods 
650 0 4 |a upper part of the section 
650 0 4 |a Upper part of the section 
700 1 |a Belonosov, A.  |e author 
700 1 |a Buddo, I.  |e author 
700 1 |a Kraev, G.  |e author 
700 1 |a Kurchatova, A.  |e author 
700 1 |a Misyurkeeva, N.  |e author 
700 1 |a Nezhdanov, A.  |e author 
700 1 |a Shelokhov, I.  |e author 
700 1 |a Smirnov, A.  |e author 
773 |t Energies