Coupled Electrohydrodynamic and Thermocapillary Instability of Multi-Phase Flows Using an Incompressible Smoothed Particle Hydrodynamics Method

This paper concerns the study of coupled effects of electrohydrodynamic (EHD) and thermocapillary (TC) on the dynamic behaviour of a single liquid droplet. An incompressible Smoothed Particle Hydrodynamic (ISPH) multiphase model is used to simulate EHD-TC driven flows. The complex hydrodynamic inter...

Full description

Bibliographic Details
Main Authors: Almasi, F. (Author), Hadjadj, A. (Author), Hopp-Hirschler, M. (Author), Nieken, U. (Author), Shadloo, M.S (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02962nam a2200421Ia 4500
001 10.3390-en15072576
008 220425s2022 CNT 000 0 und d
020 |a 19961073 (ISSN) 
245 1 0 |a Coupled Electrohydrodynamic and Thermocapillary Instability of Multi-Phase Flows Using an Incompressible Smoothed Particle Hydrodynamics Method 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/en15072576 
520 3 |a This paper concerns the study of coupled effects of electrohydrodynamic (EHD) and thermocapillary (TC) on the dynamic behaviour of a single liquid droplet. An incompressible Smoothed Particle Hydrodynamic (ISPH) multiphase model is used to simulate EHD-TC driven flows. The complex hydrodynamic interactions are modeled using the continuum surface force (CSF) method, in which the gradient of the interfacial tension and the Marangoni forces are calculated with an approximated error or 0.014% in the calculation of Marangoni force compared to the analytical solutions which is a significant improvement in comparison with previous SPH simulation studies, under the assumption that the thermocapillarity generates sufficiently large stress to allow droplet migration, while the electrohydrodynamic phenomena influences the droplet morphology depending on the electrical and thermal ratios of the droplet and the ambient fluid. This study shows that, when applying a vertical electric field and thermal gradient, the droplet starts to stretch horizontally towards a break-up condition at a high rate of electrical permitivity. The combined effect of thermal gradient and electric field tends to push further the droplet towards the break-up regime. When the thermal gradient and the electric field vector are orthogonal, results show that the droplet deformation would take place more slowly and the Marangoni forces cause the droplet to migrate, while the stretching in the direction of the electric field is not seen to be as strong as in the first case. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Capillary flow 
650 0 4 |a Coupled effect 
650 0 4 |a Drops 
650 0 4 |a Dynamic behaviors 
650 0 4 |a electrohydrodynamics 
650 0 4 |a Electrohydrodynamics 
650 0 4 |a Electrohydrodynamics instability 
650 0 4 |a Liquid droplets 
650 0 4 |a Marangoni force 
650 0 4 |a Morphology 
650 0 4 |a Multiphase flow 
650 0 4 |a Multi-phase flows 
650 0 4 |a Multi-phase fluid flow 
650 0 4 |a multiphase fluid flows 
650 0 4 |a Smoothed particle hydrodynamics methods 
650 0 4 |a Thermal conductivity 
650 0 4 |a Thermal gradients 
650 0 4 |a thermocapillary 
650 0 4 |a Thermocapillary 
650 0 4 |a Thermocapillary instability 
700 1 |a Almasi, F.  |e author 
700 1 |a Hadjadj, A.  |e author 
700 1 |a Hopp-Hirschler, M.  |e author 
700 1 |a Nieken, U.  |e author 
700 1 |a Shadloo, M.S.  |e author 
773 |t Energies