The amalgamation of SVR and ANFIS models with synchronized phasor measurements for on-line voltage stability assessment

This paper presents the application of support vector regression (SVR) and adaptive neuro-fuzzy inference system (ANFIS) models that are amalgamated with synchronized phasor measurements for on-line voltage stability assessment. As the performance of SVR model extremely depends on the good selection...

Full description

Bibliographic Details
Main Authors: Amroune, M. (Author), Bouktir, T. (Author), Musirin, I. (Author), Othman, M.M (Author)
Format: Article
Language:English
Published: MDPI AG 2017
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 02972nam a2200457Ia 4500
001 10.3390-en10111693
008 220120s2017 CNT 000 0 und d
020 |a 19961073 (ISSN) 
245 1 0 |a The amalgamation of SVR and ANFIS models with synchronized phasor measurements for on-line voltage stability assessment 
260 0 |b MDPI AG  |c 2017 
520 3 |a This paper presents the application of support vector regression (SVR) and adaptive neuro-fuzzy inference system (ANFIS) models that are amalgamated with synchronized phasor measurements for on-line voltage stability assessment. As the performance of SVR model extremely depends on the good selection of its parameters, the recently developed ant lion optimizer (ALO) is adapted to seek for the SVR's optimal parameters. In particular, the input vector of ALO-SVR and ANFIS soft computing models is provided in the form of voltage magnitudes provided by the phasor measurement units (PMUs). In order to investigate the effectiveness of ALO-SVR and ANFIS models towards performing the on-line voltage stability assessment, in-depth analyses on the results have been carried out on the IEEE 30-bus and IEEE 118-bus test systems considering different topologies and operating conditions. Two statistical performance criteria of root mean square error (RMSE) and correlation coefficient (R) were considered as metrics to further assess both of the modeling performances in contrast with the power flow equations. The results have demonstrated that the ALO-SVR model is able to predict the voltage stability margin with greater accuracy compared to the ANFIS model. © 2016 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Adaptive neuro fuzzy inference systems (ANFIS) 
650 0 4 |a Adaptive neuro-fuzzy inference system 
650 0 4 |a Ant lion optimizer 
650 0 4 |a Electric load flow 
650 0 4 |a Fuzzy inference 
650 0 4 |a Fuzzy neural networks 
650 0 4 |a Fuzzy systems 
650 0 4 |a Mean square error 
650 0 4 |a Metals 
650 0 4 |a Optimizers 
650 0 4 |a Phase measurement 
650 0 4 |a Phasor measurement unit 
650 0 4 |a Phasor Measurement Unit (PMUs) 
650 0 4 |a Phasor measurement units 
650 0 4 |a Soft computing 
650 0 4 |a Statistical performance 
650 0 4 |a Support vector regression 
650 0 4 |a Support vector regression (SVR) 
650 0 4 |a Synchronized phasor measurements 
650 0 4 |a System stability 
650 0 4 |a Voltage control 
650 0 4 |a Voltage stability 
650 0 4 |a Voltage stability margins 
700 1 0 |a Amroune, M.  |e author 
700 1 0 |a Bouktir, T.  |e author 
700 1 0 |a Musirin, I.  |e author 
700 1 0 |a Othman, M.M.  |e author 
773 |t Energies  |x 19961073 (ISSN)  |g 10 11 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/en10111693 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85035121751&doi=10.3390%2fen10111693&partnerID=40&md5=78a6ef2b51db1304222dfb235849f6d2