A New Geomagnetic Vector Navigation Method Based on a Two-Stage Neural Network
The traditional geomagnetic matching navigation method is based on the correlation criteria operations between measurement sequences and a geomagnetic map. However, when the gradient of the geomagnetic field is small, there are multiple similar data in the geomagnetic database to the measurement val...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI
2023
|
Subjects: | |
Online Access: | View Fulltext in Publisher View in Scopus |
Summary: | The traditional geomagnetic matching navigation method is based on the correlation criteria operations between measurement sequences and a geomagnetic map. However, when the gradient of the geomagnetic field is small, there are multiple similar data in the geomagnetic database to the measurement value, which means the correlation-based matching method fails. Based on the idea of pattern recognition, this paper constructs a two-stage neural network by cascading a probabilistic neural network and a non-fully connected neural network to, respectively, classify geomagnetic vectors and their feature information in two steps: “coarse screening” and “fine screening”. The effectiveness and accuracy of the geomagnetic vector navigation algorithm based on the two-stage neural network are verified through simulation and experiments. In simulation, it is verified that when the geomagnetic average gradient is 5 nT/km, the traditional geomagnetic matching method fails, while the positioning accuracy based on the proposed method is 40.17 m, and the matching success rate also reaches 98.13%. Further, in flight experiments, under an average gradient of 11 nT/km, the positioning error based on the proposed method is 39.01 m, and the matching success rate also reaches 99.42%. © 2023 by the authors. |
---|---|
ISBN: | 20799292 (ISSN) |
DOI: | 10.3390/electronics12091975 |