Heterogeneous Diffusion and Nonlinear Advection in a One-Dimensional Fisher-KPP Problem

The goal of this study is to provide an analysis of a Fisher-KPP non-linear reaction problem with a higher-order diffusion and a non-linear advection. We study the existence and uniqueness of solutions together with asymptotic solutions and positivity conditions. We show the existence of instabiliti...

Full description

Bibliographic Details
Main Authors: Palencia, J.L.D (Author), Redondo, A.N (Author), Ur Rahman, S. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01476nam a2200241Ia 4500
001 10.3390-e24070915
008 220718s2022 CNT 000 0 und d
020 |a 10994300 (ISSN) 
245 1 0 |a Heterogeneous Diffusion and Nonlinear Advection in a One-Dimensional Fisher-KPP Problem 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/e24070915 
520 3 |a The goal of this study is to provide an analysis of a Fisher-KPP non-linear reaction problem with a higher-order diffusion and a non-linear advection. We study the existence and uniqueness of solutions together with asymptotic solutions and positivity conditions. We show the existence of instabilities based on a shooting method approach. Afterwards, we study the existence and uniqueness of solutions as an abstract evolution of a bounded continuous single parametric (t) semigroup. Asymptotic solutions based on a Hamilton–Jacobi equation are then analyzed. Finally, the conditions required to ensure a comparison principle are explored supported by the existence of a positive maximal kernel. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a asymptotic 
650 0 4 |a existence 
650 0 4 |a Fisher-KPP problem 
650 0 4 |a higher-order diffusion 
650 0 4 |a instabilities 
650 0 4 |a positivity 
650 0 4 |a uniqueness 
700 1 |a Palencia, J.L.D.  |e author 
700 1 |a Redondo, A.N.  |e author 
700 1 |a Ur Rahman, S.  |e author 
773 |t Entropy