520 |
3 |
|
|a Natural colloids are widely distributed in soil and groundwater. Due to their specific characteristics, colloids can actively involve various transport contaminants, resulting in a com-plicated fate and the transport of heavy metals to the environment. This study investigated the effects of soil colloids on the adsorption and transport of Ni2+ in saturated porous media under different conditions, including pH, ion strength (IS), and humic acid (HA), because these indexes are non-negligible in the fates of various organic or inorganic matters in the subsurface environment. The results indicate that Ni2+ adsorption by soil colloids slightly increased from 17% to 25% with the increase of pH from 5.5 to 7.5 at the IS of 30 mmol·L−1, whilst it significantly reduced from 55% to 17% with the increase of IS from 0 to 30 mmol·L−1 at a pH of 5.5. Both Langmuir and Freundlich models can fit the adsorption isotherms of Ni2+ on soil colloids and quartz sand. According to the column experiment, the presence of soil colloids increased the initial penetration rate, but could not increase the final transport efficiency of Ni2+ in the effluent. The presence of soil colloids has weakened the effect of IS on Ni2+ transport in the sand column. Moreover, this experiment implies that HA remarkably decreased the Ni2+ transport efficiency from 71.3% to 58.0% in the presence of soil colloids and that there was no significant difference in the HA effect on the Ni2+ transport in the absence of soil colloids. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
|