The Brain Tracks Multiple Predictions About the Auditory Scene

The predictable rhythmic structure is important to most ecologically relevant sounds for humans, such as is found in the rhythm of speech or music. This study addressed the question of how rhythmic predictions are maintained in the auditory system when there are multiple perceptual interpretations o...

Full description

Bibliographic Details
Main Authors: Brace, K.M (Author), Sussman, E.S (Author)
Format: Article
Language:English
Published: Frontiers Media S.A. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03575nam a2200397Ia 4500
001 10.3389-fnhum.2021.747769
008 220427s2021 CNT 000 0 und d
020 |a 16625161 (ISSN) 
245 1 0 |a The Brain Tracks Multiple Predictions About the Auditory Scene 
260 0 |b Frontiers Media S.A.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3389/fnhum.2021.747769 
520 3 |a The predictable rhythmic structure is important to most ecologically relevant sounds for humans, such as is found in the rhythm of speech or music. This study addressed the question of how rhythmic predictions are maintained in the auditory system when there are multiple perceptual interpretations occurring simultaneously and emanating from the same sound source. We recorded the electroencephalogram (EEG) while presenting participants with a tone sequence that had two different tone feature patterns, one based on the sequential rhythmic variation in tone duration and the other on sequential rhythmic variation in tone intensity. Participants were presented with the same sound sequences and were instructed to listen for the intensity pattern (ignore fluctuations in duration) and press a response key to detected pattern deviants (attend intensity pattern task); to listen to the duration pattern (ignore fluctuations in intensity) and make a button press to duration pattern deviants (attend duration pattern task), and to watch a movie and ignore the sounds presented to their ears (attend visual task). Both intensity and duration patterns occurred predictably 85% of the time, thus the key question involved evaluating how the brain treated the irrelevant feature patterns (standards and deviants) while performing an auditory or visual task. We expected that task-based feature patterns would have a more robust brain response to attended standards and deviants than the unattended feature patterns. Instead, we found that the neural entrainment to the rhythm of the standard attended patterns had similar power to the standard of the unattended feature patterns. In addition, the infrequent pattern deviants elicited the event-related brain potential called the mismatch negativity component (MMN). The MMN elicited by task-based feature pattern deviants had a similar amplitude to MMNs elicited by unattended pattern deviants that were unattended because they were not the target pattern or because the participant ignored the sounds and watched a movie. Thus, these results demonstrate that the brain tracks multiple predictions about the complexities in sound streams and can automatically track and detect deviations with respect to these predictions. This capability would be useful for switching attention rapidly among multiple objects in a busy auditory scene. © Copyright © 2021 Brace and Sussman. 
650 0 4 |a adult 
650 0 4 |a Article 
650 0 4 |a auditory attention 
650 0 4 |a auditory system 
650 0 4 |a brain function 
650 0 4 |a electroencephalogram 
650 0 4 |a event related potential 
650 0 4 |a event-related potentials (ERPs) 
650 0 4 |a female 
650 0 4 |a human 
650 0 4 |a male 
650 0 4 |a mismatch negativity 
650 0 4 |a mismatch negativity (MMN) 
650 0 4 |a neural entrainment 
650 0 4 |a pattern detection 
650 0 4 |a perception 
650 0 4 |a prediction 
650 0 4 |a sound intensity 
650 0 4 |a standard 
650 0 4 |a task performance 
650 0 4 |a task switching 
700 1 |a Brace, K.M.  |e author 
700 1 |a Sussman, E.S.  |e author 
773 |t Frontiers in Human Neuroscience