Mental State Detection Using Riemannian Geometry on Electroencephalogram Brain Signals

The goal of this study was to implement a Riemannian geometry (RG)-based algorithm to detect high mental workload (MWL) and mental fatigue (MF) using task-induced electroencephalogram (EEG) signals. In order to elicit high MWL and MF, the participants performed a cognitively demanding task in the fo...

Full description

Bibliographic Details
Main Authors: Kostoglou, K. (Author), Müller-Putz, G.R (Author), Raggam, P. (Author), Wriessnegger, S.C (Author)
Format: Article
Language:English
Published: Frontiers Media S.A. 2021
Subjects:
EEG
Online Access:View Fulltext in Publisher
LEADER 02675nam a2200445Ia 4500
001 10.3389-fnhum.2021.746081
008 220427s2021 CNT 000 0 und d
020 |a 16625161 (ISSN) 
245 1 0 |a Mental State Detection Using Riemannian Geometry on Electroencephalogram Brain Signals 
260 0 |b Frontiers Media S.A.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3389/fnhum.2021.746081 
520 3 |a The goal of this study was to implement a Riemannian geometry (RG)-based algorithm to detect high mental workload (MWL) and mental fatigue (MF) using task-induced electroencephalogram (EEG) signals. In order to elicit high MWL and MF, the participants performed a cognitively demanding task in the form of the letter n-back task. We analyzed the time-varying characteristics of the EEG band power (BP) features in the theta and alpha frequency band at different task conditions and cortical areas by employing a RG-based framework. MWL and MF were considered as too high, when the Riemannian distances of the task-run EEG reached or surpassed the threshold of the baseline EEG. The results of this study showed a BP increase in the theta and alpha frequency bands with increasing experiment duration, indicating elevated MWL and MF that impedes/hinders the task performance of the participants. High MWL and MF was detected in 8 out of 20 participants. The Riemannian distances also showed a steady increase toward the threshold with increasing experiment duration, with the most detections occurring toward the end of the experiment. To support our findings, subjective ratings (questionnaires concerning fatigue and workload levels) and behavioral measures (performance accuracies and response times) were also considered. Copyright © 2021 Wriessnegger, Raggam, Kostoglou and Müller-Putz. 
650 0 4 |a accuracy 
650 0 4 |a adult 
650 0 4 |a algorithm 
650 0 4 |a alpha rhythm 
650 0 4 |a Article 
650 0 4 |a band power features 
650 0 4 |a EEG 
650 0 4 |a electroencephalography 
650 0 4 |a female 
650 0 4 |a human 
650 0 4 |a human experiment 
650 0 4 |a male 
650 0 4 |a mental fatigue 
650 0 4 |a mental fatigue 
650 0 4 |a mental health 
650 0 4 |a mental load 
650 0 4 |a mental workload 
650 0 4 |a n-back test 
650 0 4 |a normal human 
650 0 4 |a reaction time 
650 0 4 |a Riemannian geometry 
650 0 4 |a Riemannian geometry based algorithm 
650 0 4 |a theta rhythm 
700 1 |a Kostoglou, K.  |e author 
700 1 |a Müller-Putz, G.R.  |e author 
700 1 |a Raggam, P.  |e author 
700 1 |a Wriessnegger, S.C.  |e author 
773 |t Frontiers in Human Neuroscience