Information Bottleneck as Optimisation Method for SSVEP-Based BCI

In this study, the information bottleneck method is proposed as an optimisation method for steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI). The information bottleneck is an information-theoretic optimisation method for solving problems with a trade-off between prese...

Full description

Bibliographic Details
Main Authors: Ingel, A. (Author), Vicente, R. (Author)
Format: Article
Language:English
Published: Frontiers Media S.A. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03627nam a2200457Ia 4500
001 10.3389-fnhum.2021.675091
008 220427s2021 CNT 000 0 und d
020 |a 16625161 (ISSN) 
245 1 0 |a Information Bottleneck as Optimisation Method for SSVEP-Based BCI 
260 0 |b Frontiers Media S.A.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3389/fnhum.2021.675091 
520 3 |a In this study, the information bottleneck method is proposed as an optimisation method for steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI). The information bottleneck is an information-theoretic optimisation method for solving problems with a trade-off between preserving meaningful information and compression. Its main practical application in machine learning is in representation learning or feature extraction. In this study, we use the information bottleneck to find optimal classification rule for a BCI. This is a novel application for the information bottleneck. This approach is particularly suitable for BCIs since the information bottleneck optimises the amount of information transferred by the BCI. Steady-state visual evoked potential-based BCIs often classify targets using very simple rules like choosing the class corresponding to the largest feature value. We call this classifier the arg max classifier. It is unlikely that this approach is optimal, and in this study, we propose a classification method specifically designed to optimise the performance measure of BCIs. This approach gives an advantage over standard machine learning methods, which aim to optimise different measures. The performance of the proposed algorithm is tested on two publicly available datasets in offline experiments. We use the standard power spectral density analysis (PSDA) and canonical correlation analysis (CCA) feature extraction methods on one dataset and show that the current approach outperforms most of the related studies on this dataset. On the second dataset, we use the task-related component analysis (TRCA) method and demonstrate that the proposed method outperforms the standard argmax classification rule in terms of information transfer rate when using a small number of classes. To our knowledge, this is the first time the information bottleneck is used in the context of SSVEP-based BCIs. The approach is unique in the sense that optimisation is done over the space of classification functions. It potentially improves the performance of BCIs and makes it easier to calibrate the system for different subjects. © Copyright © 2021 Ingel and Vicente. 
650 0 4 |a Article 
650 0 4 |a brain-computer interface 
650 0 4 |a calibration 
650 0 4 |a classifier 
650 0 4 |a controlled study 
650 0 4 |a correlation analysis 
650 0 4 |a electroencephalography 
650 0 4 |a entropy 
650 0 4 |a feature extraction 
650 0 4 |a human 
650 0 4 |a human experiment 
650 0 4 |a information bottleneck 
650 0 4 |a information bottleneck 
650 0 4 |a information processing 
650 0 4 |a latent period 
650 0 4 |a limit of quantitation 
650 0 4 |a mutual information 
650 0 4 |a normal human 
650 0 4 |a optimisation 
650 0 4 |a power spectral density analysis 
650 0 4 |a steady state 
650 0 4 |a steady state visual evoked potential 
650 0 4 |a steady-state visual evoked potential 
650 0 4 |a task performance 
650 0 4 |a task related component analysis 
650 0 4 |a visual evoked potential 
700 1 |a Ingel, A.  |e author 
700 1 |a Vicente, R.  |e author 
773 |t Frontiers in Human Neuroscience