Dynamic Gesture Recognition Model Based on Millimeter-Wave Radar With ResNet-18 and LSTM

In this article, a multi-layer convolutional neural network (ResNet-18) and Long Short-Term Memory Networks (LSTM) model is proposed for dynamic gesture recognition. The Soli dataset is based on the dynamic gesture signals collected by millimeter-wave radar. As a gesture sensor radar, Soli radar has...

Full description

Bibliographic Details
Main Authors: Liu, S. (Author), Ma, G. (Author), Man, M. (Author), Peng, L. (Author), Zhang, Y. (Author)
Format: Article
Language:English
Published: Frontiers Media S.A. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02863nam a2200553Ia 4500
001 10.3389-fnbot.2022.903197
008 220718s2022 CNT 000 0 und d
020 |a 16625218 (ISSN) 
245 1 0 |a Dynamic Gesture Recognition Model Based on Millimeter-Wave Radar With ResNet-18 and LSTM 
260 0 |b Frontiers Media S.A.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3389/fnbot.2022.903197 
520 3 |a In this article, a multi-layer convolutional neural network (ResNet-18) and Long Short-Term Memory Networks (LSTM) model is proposed for dynamic gesture recognition. The Soli dataset is based on the dynamic gesture signals collected by millimeter-wave radar. As a gesture sensor radar, Soli radar has high positional accuracy and can recognize small movements, to achieve the ultimate goal of Human-Computer Interaction (HCI). A set of velocity-range Doppler images transformed from the original signal is used as the input of the model. Especially, ResNet-18 is used to extract deeper spatial features and solve the problem of gradient extinction or gradient explosion. LSTM is used to extract temporal features and solve the problem of long-time dependence. The model was implemented on the Soli dataset for the dynamic gesture recognition experiment, where the accuracy of gesture recognition obtained 92.55%. Finally, compare the model with the traditional methods. The result shows that the model proposed in this paper achieves higher accuracy in dynamic gesture recognition. The validity of the model is verified by experiments. Copyright © 2022 Zhang, Peng, Ma, Man and Liu. 
650 0 4 |a article 
650 0 4 |a Convolutional neural network 
650 0 4 |a explosion 
650 0 4 |a gesture 
650 0 4 |a gesture recognition 
650 0 4 |a Gesture recognition 
650 0 4 |a Gestures recognition 
650 0 4 |a human 
650 0 4 |a human computer interaction 
650 0 4 |a Human computer interaction 
650 0 4 |a Human-Computer Interaction 
650 0 4 |a long short term memory network 
650 0 4 |a Long short-term memory 
650 0 4 |a Long short-term memory network 
650 0 4 |a LSTM 
650 0 4 |a Memory network 
650 0 4 |a Millimeter waves 
650 0 4 |a millimeter-wave radar 
650 0 4 |a Millimeter-wave radar 
650 0 4 |a Millimetre-wave radar 
650 0 4 |a Model-based OPC 
650 0 4 |a Multilayer neural networks 
650 0 4 |a Multi-layers 
650 0 4 |a Network layers 
650 0 4 |a Radar 
650 0 4 |a Recognition models 
650 0 4 |a residual neural network 
650 0 4 |a Resnet-18 
650 0 4 |a ResNet-18 
650 0 4 |a telecommunication 
650 0 4 |a validity 
700 1 |a Liu, S.  |e author 
700 1 |a Ma, G.  |e author 
700 1 |a Man, M.  |e author 
700 1 |a Peng, L.  |e author 
700 1 |a Zhang, Y.  |e author 
773 |t Frontiers in Neurorobotics  |x 16625218 (ISSN)  |g 16