EEG Identity Authentication in Multi-Domain Features: A Multi-Scale 3D-CNN Approach

Electroencephalogram (EEG) authentication has become a research hotspot in the field of information security due to its advantages of living, internal, and anti-stress. However, the performance of identity authentication system is limited by the inherent attributes of EEG, such as low SNR, low stabi...

Full description

Bibliographic Details
Main Authors: Li, Z. (Author), Lu, R. (Author), Shu, J. (Author), Tong, L. (Author), Yan, B. (Author), Yang, K. (Author), Zeng, Y. (Author), Zhang, R. (Author)
Format: Article
Language:English
Published: Frontiers Media S.A. 2022
Subjects:
EEG
ERP
Online Access:View Fulltext in Publisher
LEADER 03642nam a2200577Ia 4500
001 10.3389-fnbot.2022.901765
008 220718s2022 CNT 000 0 und d
020 |a 16625218 (ISSN) 
245 1 0 |a EEG Identity Authentication in Multi-Domain Features: A Multi-Scale 3D-CNN Approach 
260 0 |b Frontiers Media S.A.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3389/fnbot.2022.901765 
520 3 |a Electroencephalogram (EEG) authentication has become a research hotspot in the field of information security due to its advantages of living, internal, and anti-stress. However, the performance of identity authentication system is limited by the inherent attributes of EEG, such as low SNR, low stability, and strong randomness. Researchers generally believe that the in-depth fusion of features can improve the performance of identity authentication and have explored among various feature domains. This experiment invited 70 subjects to participate in the EEG identity authentication task, and the experimental materials were visual stimuli of the self and non-self-names. This paper proposes an innovative EEG authentication framework, including efficient three-dimensional representation of EEG signals, multi-scale convolution structure, and the combination of multiple authentication strategies. In this work, individual EEG signals are converted into spatial–temporal–frequency domain three-dimensional forms to provide multi-angle mixed feature representation. Then, the individual identity features are extracted by the various convolution kernel of multi-scale vision, and the strategy of combining multiple convolution kernels is explored. The results show that the small-size and long-shape convolution kernel is suitable for ERP tasks, which can obtain better convergence and accuracy. The experimental results show that the classification performance of the proposed framework is excellent, and the multi-scale convolution method is effective to extract high-quality identity characteristics across feature domains. The results show that the branch number matches the EEG component number can obtain the excellent cost performance. In addition, this paper explores the network training performance for multi-scale module combination strategy and provides reference for deep network construction strategy of EEG signal processing. Copyright © 2022 Zhang, Zeng, Tong, Shu, Lu, Li, Yang and Yan. 
650 0 4 |a 3d-CNN 
650 0 4 |a 3D-CNN 
650 0 4 |a adult 
650 0 4 |a article 
650 0 4 |a Authentication 
650 0 4 |a Authentication systems 
650 0 4 |a controlled study 
650 0 4 |a Convolution 
650 0 4 |a Convolution kernel 
650 0 4 |a EEG 
650 0 4 |a electroencephalogram 
650 0 4 |a Electroencephalogram signals 
650 0 4 |a Electroencephalography 
650 0 4 |a ERP 
650 0 4 |a Feature domain 
650 0 4 |a female 
650 0 4 |a Frequency domain analysis 
650 0 4 |a Hotspots 
650 0 4 |a human 
650 0 4 |a human experiment 
650 0 4 |a identity authentication 
650 0 4 |a Identity authentication 
650 0 4 |a major clinical study 
650 0 4 |a male 
650 0 4 |a Multi-domain features 
650 0 4 |a multi-scale 
650 0 4 |a Multi-scales 
650 0 4 |a Performance 
650 0 4 |a signal processing 
650 0 4 |a vision 
700 1 |a Li, Z.  |e author 
700 1 |a Lu, R.  |e author 
700 1 |a Shu, J.  |e author 
700 1 |a Tong, L.  |e author 
700 1 |a Yan, B.  |e author 
700 1 |a Yang, K.  |e author 
700 1 |a Zeng, Y.  |e author 
700 1 |a Zhang, R.  |e author 
773 |t Frontiers in Neurorobotics  |x 16625218 (ISSN)  |g 16