Optimization of Refill Friction Stir Spot Welded AA2024-T3 Using Machine Learning

The Refill Friction Stir Spot Welding is an innovative spot like solid state process befitting of overlap joint configurations of similar and dissimilar materials. This process caught the interest and is rapidly growing in the aerospace sector due to its potential to substitute traditional mechanica...

Full description

Bibliographic Details
Main Authors: Amancio-Filho, S.T (Author), de Carvalho, W.S (Author), Effertz, P.S (Author), Guimarães, R.P.M (Author), Saria, G. (Author)
Format: Article
Language:English
Published: Frontiers Media S.A. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02668nam a2200445Ia 4500
001 10.3389-fmats.2022.864187
008 220510s2022 CNT 000 0 und d
020 |a 22968016 (ISSN) 
245 1 0 |a Optimization of Refill Friction Stir Spot Welded AA2024-T3 Using Machine Learning 
260 0 |b Frontiers Media S.A.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3389/fmats.2022.864187 
520 3 |a The Refill Friction Stir Spot Welding is an innovative spot like solid state process befitting of overlap joint configurations of similar and dissimilar materials. This process caught the interest and is rapidly growing in the aerospace sector due to its potential to substitute traditional mechanical fasteners, surpassing their mechanical performance while maintaining the so desired lightweight “rationale.” In the current study, process parameters, namely plunge depth, plunge time and rotational speed, are optimized in order to obtain the highest Ultimate Lap Shear Force (ULSF) of 2024-T3 Aluminum Alloy similar joints. The optimization campaign was carried out using a second order multivariate polynomial regression machine learning (ML) algorithm. The trained ML model was able to generalize and accurately predict the Ultimate Lap Shear Force on the holdout set, having a (Formula presented.) of 88.0%. Moreover, the model suggested an optimum parameter combination (Rotational Speed = 2,310 rpm, Welding Time = 5.3 s and Plunge Depth = 2.6 mm) from which the predicted maximum ULSF was computed. Confirmation tests were carried out to evaluate the agreement between the predicted and the experimental values. Copyright © 2022 Effertz, de Carvalho, Guimarães, Saria and Amancio-Filho. 
650 0 4 |a AA2024-T3 
650 0 4 |a AA2024-T3 
650 0 4 |a Aluminum alloys 
650 0 4 |a Dissimilar materials 
650 0 4 |a Friction 
650 0 4 |a Friction stir 
650 0 4 |a Friction stir spot welding 
650 0 4 |a Friction stir welding 
650 0 4 |a Lap shear 
650 0 4 |a machine learning 
650 0 4 |a Machine learning 
650 0 4 |a Optimisations 
650 0 4 |a optimization 
650 0 4 |a polynomial regression 
650 0 4 |a Polynomial regression 
650 0 4 |a refill friction stir spot welding 
650 0 4 |a Refill friction stir spot welding 
650 0 4 |a Rotational speed 
650 0 4 |a Shear flow 
650 0 4 |a Shear force 
650 0 4 |a Spot welded 
650 0 4 |a Spot welding 
700 1 |a Amancio-Filho, S.T.  |e author 
700 1 |a de Carvalho, W.S.  |e author 
700 1 |a Effertz, P.S.  |e author 
700 1 |a Guimarães, R.P.M.  |e author 
700 1 |a Saria, G.  |e author 
773 |t Frontiers in Materials