FNSAM: Image super-resolution using a feedback network with self-attention mechanism

BACKGROUND: High-resolution (HR) magnetic resonance imaging (MRI) provides rich pathological information which is of great significance in diagnosis and treatment of brain lesions. However, obtaining HR brain MRI images comes at the cost of extending scan time and using sophisticated expensive instr...

Full description

Bibliographic Details
Main Authors: Huang, Y. (Author), Li, M. (Author), Wang, W. (Author)
Format: Article
Language:English
Published: NLM (Medline) 2023
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02550nam a2200421Ia 4500
001 10.3233-THC-236033
008 230526s2023 CNT 000 0 und d
020 |a 18787401 (ISSN) 
245 1 0 |a FNSAM: Image super-resolution using a feedback network with self-attention mechanism 
260 0 |b NLM (Medline)  |c 2023 
300 |a 13 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3233/THC-236033 
520 3 |a BACKGROUND: High-resolution (HR) magnetic resonance imaging (MRI) provides rich pathological information which is of great significance in diagnosis and treatment of brain lesions. However, obtaining HR brain MRI images comes at the cost of extending scan time and using sophisticated expensive instruments. OBJECTIVE: This study aims to reconstruct HR MRI images from low-resolution (LR) images by developing a deep learning based super-resolution (SR) method. METHODS: We propose a feedback network with self-attention mechanism (FNSAM) for SR reconstruction of brain MRI images. Specifically, a feedback network is built to correct shallow features by using a recurrent neural network (RNN) and the self-attention mechanism (SAM) is integrated into the feedback network for extraction of important information as the feedback signal, which promotes image hierarchy. RESULTS: Experimental results show that the proposed FNSAM obtains more reasonable SR reconstruction of brain MRI images both in peak signal to noise ratio (PSNR) and structural similarity index measure (SSIM) than some state-of-the-arts. CONCLUSION: Our proposed method is suitable for SR reconstruction of MRI images. 
650 0 4 |a artificial neural network 
650 0 4 |a brain 
650 0 4 |a Brain 
650 0 4 |a convolutional neural network 
650 0 4 |a diagnostic imaging 
650 0 4 |a Feedback 
650 0 4 |a feedback network 
650 0 4 |a feedback system 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a image processing 
650 0 4 |a Image Processing, Computer-Assisted 
650 0 4 |a Magnetic Resonance Imaging 
650 0 4 |a MRI image 
650 0 4 |a Neural Networks, Computer 
650 0 4 |a nuclear magnetic resonance imaging 
650 0 4 |a procedures 
650 0 4 |a self-attention mechanism 
650 0 4 |a signal noise ratio 
650 0 4 |a Signal-To-Noise Ratio 
650 0 4 |a super-resolution 
700 1 0 |a Huang, Y.  |e author 
700 1 0 |a Li, M.  |e author 
700 1 0 |a Wang, W.  |e author 
773 |t Technology and health care : official journal of the European Society for Engineering and Medicine  |x 18787401 (ISSN)  |g 31 S1, 383-395