Exploratory Clustering for Emergency Department Patients

Emergency department (ED) overcrowding is an increasing global problem raising safety concerns for the patients. Elaborating an effective triage system that properly separates patients requiring hospital admission remains difficult. The objective of this study was to compare a clustering-related tec...

Full description

Bibliographic Details
Main Authors: Batiani, P. (Author), Chatzikyriakou, R. (Author), Dalainas, I. (Author), Feretzakis, G. (Author), Kaldis, V. (Author), Kalles, D. (Author), Kolokytha, S. (Author), Loupelis, E. (Author), Panteris, V. (Author), Petropoulou, S. (Author), Rakopoulou, Z. (Author), Sakagianni, A. (Author), Tika, A. (Author), Trakas, N. (Author), Tzelves, L. (Author)
Format: Article
Language:English
Published: NLM (Medline) 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01993nam a2200493Ia 4500
001 10.3233-SHTI220775
008 220718s2022 CNT 000 0 und d
020 |a 18798365 (ISSN) 
245 1 0 |a Exploratory Clustering for Emergency Department Patients 
260 0 |b NLM (Medline)  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3233/SHTI220775 
520 3 |a Emergency department (ED) overcrowding is an increasing global problem raising safety concerns for the patients. Elaborating an effective triage system that properly separates patients requiring hospital admission remains difficult. The objective of this study was to compare a clustering-related technique assignment of emergency department patients with the admission output using the k-means algorithm. Incorporating such a model into triage practice could theoretically shorten waiting times and reduce ED overcrowding. 
650 0 4 |a adult 
650 0 4 |a article 
650 0 4 |a clustering 
650 0 4 |a controlled study 
650 0 4 |a crowding (area) 
650 0 4 |a emergency department 
650 0 4 |a emergency ward 
650 0 4 |a hospital admission 
650 0 4 |a human 
650 0 4 |a k means clustering 
650 0 4 |a k-means 
650 0 4 |a machine learning 
650 0 4 |a Machine learning 
650 0 4 |a patient triage 
650 0 4 |a unsupervised learning 
650 0 4 |a unsupervised machine learning 
700 1 |a Batiani, P.  |e author 
700 1 |a Chatzikyriakou, R.  |e author 
700 1 |a Dalainas, I.  |e author 
700 1 |a Feretzakis, G.  |e author 
700 1 |a Kaldis, V.  |e author 
700 1 |a Kalles, D.  |e author 
700 1 |a Kolokytha, S.  |e author 
700 1 |a Loupelis, E.  |e author 
700 1 |a Panteris, V.  |e author 
700 1 |a Petropoulou, S.  |e author 
700 1 |a Rakopoulou, Z.  |e author 
700 1 |a Sakagianni, A.  |e author 
700 1 |a Tika, A.  |e author 
700 1 |a Trakas, N.  |e author 
700 1 |a Tzelves, L.  |e author 
773 |t Studies in health technology and informatics