Monophonic Eccentric Domination Numbers of Graphs

Let G be a (simple) undirected graph with vertex and edge sets V (G) and E(G), respectively. A set S ⊆ V (G) is a monophonic eccentric dominating set if every vertex in V (G) \S has a monophonic eccentric vertex in S. The minimum size of a monophonic eccentric dominating set in G is called the monop...

Full description

Bibliographic Details
Main Authors: Canoy, S.R., Jr (Author), Gamorez, A.E (Author)
Format: Article
Language:English
Published: New York Business Global 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01416nam a2200217Ia 4500
001 10.29020-nybg.ejpam.v15i2.4354
008 220706s2022 CNT 000 0 und d
020 |a 13075543 (ISSN) 
245 1 0 |a Monophonic Eccentric Domination Numbers of Graphs 
260 0 |b New York Business Global  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.29020/nybg.ejpam.v15i2.4354 
520 3 |a Let G be a (simple) undirected graph with vertex and edge sets V (G) and E(G), respectively. A set S ⊆ V (G) is a monophonic eccentric dominating set if every vertex in V (G) \S has a monophonic eccentric vertex in S. The minimum size of a monophonic eccentric dominating set in G is called the monophonic eccentric domination number of G. It shown that the absolute difference of the domination number and monophonic eccentric domination number of a graph can be made arbitrarily large. We characterize the monophonic eccentric dominating sets in graphs resulting from the join, corona, and lexicographic product of two graphs and determine bounds on their monophonic eccentric domination numbers. © 2022 EJPAM All rights reserved. 
650 0 4 |a corona 
650 0 4 |a domination 
650 0 4 |a eccentric 
650 0 4 |a join 
650 0 4 |a lexicographic product 
650 0 4 |a Monophonic 
700 1 |a Canoy, S.R., Jr.  |e author 
700 1 |a Gamorez, A.E.  |e author 
773 |t European Journal of Pure and Applied Mathematics