Predicting Mental Health Status in Remote and Rural Farming Communities: Computational Analysis of Text-Based Counseling

Background: Australians living in rural and remote areas are at elevated risk of mental health problems and must overcome barriers to help seeking, such as poor access, stigma, and entrenched stoicism. e-Mental health services circumvent such barriers using technology, and text-based services are pa...

Full description

Bibliographic Details
Main Authors: Antoniou, M. (Author), de Almeida Neto, A. (Author), Dwyer, A. (Author), Estival, D. (Author), Lam-Cassettari, C. (Author), Li, W. (Author)
Format: Article
Language:English
Published: JMIR Publications Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02637nam a2200289Ia 4500
001 10.2196-33036
008 220706s2022 CNT 000 0 und d
020 |a 2561326X (ISSN) 
245 1 0 |a Predicting Mental Health Status in Remote and Rural Farming Communities: Computational Analysis of Text-Based Counseling 
260 0 |b JMIR Publications Inc.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.2196/33036 
520 3 |a Background: Australians living in rural and remote areas are at elevated risk of mental health problems and must overcome barriers to help seeking, such as poor access, stigma, and entrenched stoicism. e-Mental health services circumvent such barriers using technology, and text-based services are particularly well suited to clients concerned with privacy and self-presentation. They allow the client to reflect on the therapy session after it has ended as the chat log is stored on their device. The text also offers researchers an opportunity to analyze language use patterns and explore how these relate to mental health status. Objective: In this project, we investigated whether computational linguistic techniques can be applied to text-based communications with the goal of identifying a client’s mental health status. Methods: Client-therapist text messages were analyzed using the Linguistic Inquiry and Word Count tool. We examined whether the resulting word counts related to the participants’ presenting problems or their self-ratings of mental health at the completion of counseling. Results: The results confirmed that word use patterns could be used to differentiate whether a client had one of the top 3 presenting problems (depression, anxiety, or stress) and, prospectively, to predict their self-rated mental health after counseling had been completed. Conclusions: These findings suggest that language use patterns are useful for both researchers and clinicians trying to identify individuals at risk of mental health problems, with potential applications in screening and targeted intervention. © Mark Antoniou, Dominique Estival, Christa Lam-Cassettari, Weicong Li, Anne Dwyer, Abìlio de Almeida Neto. 
650 0 4 |a anxiety 
650 0 4 |a counseling 
650 0 4 |a depression 
650 0 4 |a e-mental health 
650 0 4 |a Linguistic Inquiry and Word Count 
650 0 4 |a LIWC 
650 0 4 |a stress 
650 0 4 |a text-based 
700 1 |a Antoniou, M.  |e author 
700 1 |a de Almeida Neto, A.  |e author 
700 1 |a Dwyer, A.  |e author 
700 1 |a Estival, D.  |e author 
700 1 |a Lam-Cassettari, C.  |e author 
700 1 |a Li, W.  |e author 
773 |t JMIR Formative Research