On the algebraic K-theory of double points

We use trace methods to study the algebraic K-theory of rings of the form R[x1,…, xd ]/(%i,…, xd )2. We compute the relative p-adic K groups for R a perfectoid ring. In particular, we get the integral K groups when R is a finite field, and the integral relative K groups Ks.R^,…, xd]/(x1,…, xd)2, (x1...

Full description

Bibliographic Details
Main Author: Riggenbach, N. (Author)
Format: Article
Language:English
Published: Mathematical Sciences Publishers 2022
Online Access:View Fulltext in Publisher
LEADER 00974nam a2200133Ia 4500
001 10.2140-agt.2022.22.373
008 220706s2022 CNT 000 0 und d
020 |a 14722747 (ISSN) 
245 1 0 |a On the algebraic K-theory of double points 
260 0 |b Mathematical Sciences Publishers  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.2140/agt.2022.22.373 
520 3 |a We use trace methods to study the algebraic K-theory of rings of the form R[x1,…, xd ]/(%i,…, xd )2. We compute the relative p-adic K groups for R a perfectoid ring. In particular, we get the integral K groups when R is a finite field, and the integral relative K groups Ks.R^,…, xd]/(x1,…, xd)2, (x1,…, xd)) when R is a perfect Fp-algebra. We conclude with some other notable computations, including some rings which are not quite of the above form. © 2022, Mathematical Sciences Publishers. All rights reserved. 
700 1 |a Riggenbach, N.  |e author 
773 |t Algebraic and Geometric Topology