Effect of Laser Traverse Speed during Laser Hardening on Hardness Distribution and Microstructure of Hot Work Tool Steel H11

The paper describes the effect of laser traverse speed during laser hardening on hardness and microstructure. The experimental material is hot work tool steel AISI H11 with samples sized 100×100×35 mm. The initial state of the material before laser hardening is quenched and tempered. The laser harde...

Full description

Bibliographic Details
Main Authors: Hodek, J. (Author), Hradil, D. (Author), Koukolíková, M. (Author), Nový, Z. (Author), Szyszko, A. (Author)
Format: Article
Language:English
Published: Jan-Evangelista-Purkyne-University 2023
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02813nam a2200469Ia 4500
001 10.21062-mft.2023.021
008 230526s2023 CNT 000 0 und d
020 |a 12132489 (ISSN) 
245 1 0 |a Effect of Laser Traverse Speed during Laser Hardening on Hardness Distribution and Microstructure of Hot Work Tool Steel H11 
260 0 |b Jan-Evangelista-Purkyne-University  |c 2023 
300 |a 8 
856 |z View Fulltext in Publisher  |u https://doi.org/10.21062/mft.2023.021 
520 3 |a The paper describes the effect of laser traverse speed during laser hardening on hardness and microstructure. The experimental material is hot work tool steel AISI H11 with samples sized 100×100×35 mm. The initial state of the material before laser hardening is quenched and tempered. The laser hardening temperature is constant at 1100 °C, selected laser traverse speed was 1, 2, 4, and 6 mm/s. A numerical simulation performed in DEFORM-3D software before the experiment showed tendencies of temperature displacement and expected course of hardness. Increasing traverse speed leads to decreased laser-hardened depth and decreased hardness drop in the heat-affected zone (HAZ). The experimental program confirmed the results of the numerical model. The differences in the microstructure were investigated by light (LM) and scanning electron microscopes (SEM), which revealed an evident difference between the surface area and the locality with the lowest hardness. Local differences from the perspective of presence of carbides were analysed by energy dispersive spectroscopy (EDS). This investigation was performed to optimize laser traverse speed to improve the subsurface hardness profile, which is essential for the lifetime and reliability of forging dies. © 2023 Manufacturing Technology. All rights reserved. 
650 0 4 |a Carbides 
650 0 4 |a Computer software 
650 0 4 |a EDS analysis 
650 0 4 |a Energy dispersive spectroscopy 
650 0 4 |a Energy dispersive spectroscopy analyse 
650 0 4 |a Experimental materials 
650 0 4 |a Hardened depth 
650 0 4 |a Hardening 
650 0 4 |a Hardness 
650 0 4 |a Hardness distribution 
650 0 4 |a Hardness drops 
650 0 4 |a Heat affected zone 
650 0 4 |a Heat-affected zones 
650 0 4 |a Hot working 
650 0 4 |a Hot-work tool steel 
650 0 4 |a Initial state 
650 0 4 |a Laser hardening 
650 0 4 |a Microstructure 
650 0 4 |a Numerical model 
650 0 4 |a Numerical models 
650 0 4 |a Scanning electron microscopy 
650 0 4 |a Tool steel 
650 0 4 |a Traverse speed 
700 1 0 |a Hodek, J.  |e author 
700 1 0 |a Hradil, D.  |e author 
700 1 0 |a Koukolíková, M.  |e author 
700 1 0 |a Nový, Z.  |e author 
700 1 0 |a Szyszko, A.  |e author 
773 |t Manufacturing Technology  |x 12132489 (ISSN)  |g 23 2, 153-160