Production of biogas through anaerobic digestion of Cabomba furcata in digester batch system

Biogas is produced from decomposition of organic waste such as sewage sludge, animal manure, and municipality solid wastes by microorganisms in anaerobic conditions. Biogas, which consist mainly of methane is a renewable energy source. It can be used for heating, power generation or upgrading to nat...

Full description

Bibliographic Details
Main Authors: Abdullah, S.R.S (Author), Elham, O.S.J (Author), Hasan, H.A (Author), Muda, S.A (Author)
Format: Article
Language:English
Published: Malaysian Society of Analytical Sciences 2016
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
Description
Summary:Biogas is produced from decomposition of organic waste such as sewage sludge, animal manure, and municipality solid wastes by microorganisms in anaerobic conditions. Biogas, which consist mainly of methane is a renewable energy source. It can be used for heating, power generation or upgrading to natural gas quality. In this study, the anaerobic treatability and biogas generation potential of Cabomba furcata (C. furcata) were examined in batch digesters. C. furcata collected from Chini Lake, Pahang was utilized as a substrate in biogas production. Slurry samples of C. furcata were prepared in 2 different mixture i.e., C. furcata/water ratio (1:1, 1:2 and 1:3) and C. furcata/inoculums ratio (1:1, 1:2 and 1:3). Throughout the experiment, the pH range was 5.5 to 7.0 while temperature range was 25 to 30 °C to enable anaerobic digestion in mesophilic condition for a retention time of 28 days. The results showed that the maximum methane production achieved at ratio of 1:3 for both mixture C. furcata/water and C. furcata/inoculums with production percentages up to 1.1 and 11.9%, respectively. Moreover, the result indicated that the production of methane increased as the retention time increased. Therefore, native plant of C. furcata is a great potential as a substrate in the production of biogas for future renewable energy. © 2016, Malaysian Society of Analytical Sciences. All rights reserved.
ISBN:13942506 (ISSN)
ISSN:13942506 (ISSN)
DOI:10.17576/mjas-2016-2006-30