Electrochemical synthesis of ordered titania nanotubes in mixture of ethylene glycol and glycerol electrolyte
The electrolyte chemistry (nature and its composition) plays a critical role in determining the nanotube architecture and its growth process. In the present study, the formation of well-ordered titania nanotubes (TNT) is achieved by electrochemical anodization of titanium substrate in aqueous ethyle...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Malaysian Society of Analytical Sciences
2016
|
Subjects: | |
Online Access: | View Fulltext in Publisher View in Scopus |
LEADER | 02280nam a2200241Ia 4500 | ||
---|---|---|---|
001 | 10.17576-mjas-2016-2002-21 | ||
008 | 220120s2016 CNT 000 0 und d | ||
020 | |a 13942506 (ISSN) | ||
245 | 1 | 0 | |a Electrochemical synthesis of ordered titania nanotubes in mixture of ethylene glycol and glycerol electrolyte |
260 | 0 | |b Malaysian Society of Analytical Sciences |c 2016 | |
520 | 3 | |a The electrolyte chemistry (nature and its composition) plays a critical role in determining the nanotube architecture and its growth process. In the present study, the formation of well-ordered titania nanotubes (TNT) is achieved by electrochemical anodization of titanium substrate in aqueous ethylene glycol-glycerol electrolyte (EG/Gly). The resulted samples were characterized using X-ray Diffraction (XRD) and the morphology changes were monitored by Field Emission Scanning Electron Microscopy (FESEM). Compositional changes of the titania nanotubes (TNT) were determined using Energy Dispersive X-ray Spectroscopy (EDX). The influence of anodization voltage, volume ratio of electrolyte and NH4F content on the morphology and geometry of titania nanotubes have been investigated. The nature of electrolytes influenced the ordering and uniformity of nanotubes. In addition, nanotubes with various diameters ranging from 62-112 nm and lengths of 1.1-1.3 μm were obtained by controlling the anodization voltage and volume ratio of EG/Gly. Ultimately, anodization of Ti at 20 V in 1:1 volume ratio of EG/Gly containing 0.25-1.0 wt.% NH4F appears to be an optimum condition for controlling the ordering of nanotubes. © 2016, Malaysian Society of Analytical Sciences. All rights reserved. | |
650 | 0 | 4 | |a Anodization |
650 | 0 | 4 | |a Ethylene glycol |
650 | 0 | 4 | |a Glycerol |
650 | 0 | 4 | |a Nanotube |
650 | 0 | 4 | |a Titania |
700 | 1 | 0 | |a Chin, L.Y. |e author |
700 | 1 | 0 | |a Ismail, S.S. |e author |
700 | 1 | 0 | |a Khusaimi, Z. |e author |
700 | 1 | 0 | |a Zainal, Z. |e author |
773 | |t Malaysian Journal of Analytical Sciences |x 13942506 (ISSN) |g 20 2, 373-381 | ||
856 | |z View Fulltext in Publisher |u https://doi.org/10.17576/mjas-2016-2002-21 | ||
856 | |z View in Scopus |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964308654&doi=10.17576%2fmjas-2016-2002-21&partnerID=40&md5=1620a844c9c0d0c48d1ec5fc8c2d7111 |