Modeling glioblastoma heterogeneity as a dynamic network of cell states

Tumor cell heterogeneity is a crucial characteristic of malignant brain tumors and underpins phenomena such as therapy resistance and tumor recurrence. Advances in single-cell analysis have enabled the delineation of distinct cellular states of brain tumor cells, but the time-dependent changes in su...

Full description

Bibliographic Details
Main Authors: Dalmo, E. (Author), Doroszko, M. (Author), Elgendy, R. (Author), Jörnsten, R. (Author), Larsson, I. (Author), Nelander, S. (Author), Niklasson, M. (Author), Segerman, A. (Author), Westermark, B. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
RNA
Online Access:View Fulltext in Publisher
LEADER 03559nam a2200793Ia 4500
001 10.15252-msb.202010105
008 220427s2021 CNT 000 0 und d
020 |a 17444292 (ISSN) 
245 1 0 |a Modeling glioblastoma heterogeneity as a dynamic network of cell states 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.15252/msb.202010105 
520 3 |a Tumor cell heterogeneity is a crucial characteristic of malignant brain tumors and underpins phenomena such as therapy resistance and tumor recurrence. Advances in single-cell analysis have enabled the delineation of distinct cellular states of brain tumor cells, but the time-dependent changes in such states remain poorly understood. Here, we construct quantitative models of the time-dependent transcriptional variation of patient-derived glioblastoma (GBM) cells. We build the models by sampling and profiling barcoded GBM cells and their progeny over the course of 3 weeks and by fitting a mathematical model to estimate changes in GBM cell states and their growth rates. Our model suggests a hierarchical yet plastic organization of GBM, where the rates and patterns of cell state switching are partly patient-specific. Therapeutic interventions produce complex dynamic effects, including inhibition of specific states and altered differentiation. Our method provides a general strategy to uncover time-dependent changes in cancer cells and offers a way to evaluate and predict how therapy affects cell state composition. © 2021 The Authors. Published under the terms of the CC BY 4.0 license 
650 0 4 |a Article 
650 0 4 |a astrocyte 
650 0 4 |a bone morphogenetic protein 4 
650 0 4 |a Brain Neoplasms 
650 0 4 |a brain tumor 
650 0 4 |a cancer cell 
650 0 4 |a CD24 antigen 
650 0 4 |a cell differentiation 
650 0 4 |a cell growth 
650 0 4 |a cell heterogeneity 
650 0 4 |a Cell Line, Tumor 
650 0 4 |a cell lineage 
650 0 4 |a cell proliferation 
650 0 4 |a cell state 
650 0 4 |a cellular barcoding 
650 0 4 |a controlled study 
650 0 4 |a cyclin dependent kinase inhibitor 1A 
650 0 4 |a flow cytometry 
650 0 4 |a fluorescence activated cell sorting 
650 0 4 |a gene set enrichment analysis 
650 0 4 |a genetics 
650 0 4 |a glioblastoma 
650 0 4 |a Glioblastoma 
650 0 4 |a Hermes antigen 
650 0 4 |a human 
650 0 4 |a human cell 
650 0 4 |a Humans 
650 0 4 |a Markov chain 
650 0 4 |a mathematical model 
650 0 4 |a Neoplasm Recurrence, Local 
650 0 4 |a neural stem cell 
650 0 4 |a oligodendrocyte precursor cell 
650 0 4 |a patient-derived brain tumor cells 
650 0 4 |a RNA 
650 0 4 |a single cell analysis 
650 0 4 |a single cell RNA seq 
650 0 4 |a Single-Cell Analysis 
650 0 4 |a single-cell lineage tracing 
650 0 4 |a stochastic model 
650 0 4 |a temozolomide 
650 0 4 |a time-dependent computational models 
650 0 4 |a transcription factor Sox2 
650 0 4 |a transcription factor Sox4 
650 0 4 |a transcriptome 
650 0 4 |a tumor cell line 
650 0 4 |a tumor recurrence 
650 0 4 |a upregulation 
700 1 |a Dalmo, E.  |e author 
700 1 |a Doroszko, M.  |e author 
700 1 |a Elgendy, R.  |e author 
700 1 |a Jörnsten, R.  |e author 
700 1 |a Larsson, I.  |e author 
700 1 |a Nelander, S.  |e author 
700 1 |a Niklasson, M.  |e author 
700 1 |a Segerman, A.  |e author 
700 1 |a Westermark, B.  |e author 
773 |t Molecular Systems Biology