Auxiliary diagnosis study of integrated electronic medical record text and CT images

At present, most of the research in the field of medical-assisted diagnosis is carried out based on image or electronic medical records. Although there is some research foundation, they lack the comprehensive consideration of comprehensive image and text modes. Based on this situation, this article...

Full description

Bibliographic Details
Main Authors: Hang, D. (Author), Kailin, L. (Author), Shi, L. (Author), Yijie, F. (Author), Yuanchuan, D. (Author)
Format: Article
Language:English
Published: De Gruyter Open Ltd 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02695nam a2200469Ia 4500
001 10.1515-jisys-2022-0040
008 220718s2022 CNT 000 0 und d
020 |a 03341860 (ISSN) 
245 1 0 |a Auxiliary diagnosis study of integrated electronic medical record text and CT images 
260 0 |b De Gruyter Open Ltd  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1515/jisys-2022-0040 
520 3 |a At present, most of the research in the field of medical-assisted diagnosis is carried out based on image or electronic medical records. Although there is some research foundation, they lack the comprehensive consideration of comprehensive image and text modes. Based on this situation, this article proposes a fusion classification auxiliary diagnosis model based on GoogleNet model and Bi-LSTM model, uses GoogleNet to process brain computed tomographic (CT) images of ischemic stroke patients and extract CT image features, uses Bi-LSTM model to extract the electronic medical record text, integrates the two features using the full connection layer network and Softmax classifier, and obtains a method that can assist the diagnosis from two modes. Experiments show that the proposed scheme on average improves 3.05% in accuracy compared to individual image or text modes, and the best performing GoogleNet + Bi-LSTM model achieves 96.61% accuracy; although slightly less in recall, it performs better on F1 values, and has provided feasible new ideas and new methods for research in the field of multi-model medical-assisted diagnosis. © 2022 Duan Yuanchuan et al., published by De Gruyter. 
650 0 4 |a Bi-LSTM model 
650 0 4 |a Classification (of information) 
650 0 4 |a Computed tomographic 
650 0 4 |a Computer aided diagnosis 
650 0 4 |a Computerized tomography 
650 0 4 |a Diagnosis model 
650 0 4 |a Fusion classification 
650 0 4 |a fusion features 
650 0 4 |a Fusion features 
650 0 4 |a Googlenet model 
650 0 4 |a GoogleNet model 
650 0 4 |a Image enhancement 
650 0 4 |a Image fusion 
650 0 4 |a Integrated electronics 
650 0 4 |a Long short-term memory 
650 0 4 |a Medical computing 
650 0 4 |a Medical imaging 
650 0 4 |a Medical record 
650 0 4 |a Medical-assisted diagnose 
650 0 4 |a medical-assisted diagnosis 
650 0 4 |a Multilayer neural networks 
650 0 4 |a Network layers 
650 0 4 |a Text processing 
650 0 4 |a Tomographic images 
700 1 |a Hang, D.  |e author 
700 1 |a Kailin, L.  |e author 
700 1 |a Shi, L.  |e author 
700 1 |a Yijie, F.  |e author 
700 1 |a Yuanchuan, D.  |e author 
773 |t Journal of Intelligent Systems  |x 03341860 (ISSN)  |g 31 1, 753-766