Similarity measure and domain adaptation in multiple mixture model clustering: An application to image processing

This paper considers three crucial issues in processing scaled down image, the representation of partial image, similarity measure and domain adaptation. Two Gaussian mixture model based algorithms are proposed to effectively preserve image details and avoids image degradation. Multiple partial imag...

Full description

Bibliographic Details
Main Authors: Leong, S.H (Author), Ong, S.H (Author)
Format: Article
Language:English
Published: Public Library of Science 2017
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 02823nam a2200457Ia 4500
001 10.1371-journal.pone.0180307
008 220120s2017 CNT 000 0 und d
020 |a 19326203 (ISSN) 
245 1 0 |a Similarity measure and domain adaptation in multiple mixture model clustering: An application to image processing 
260 0 |b Public Library of Science  |c 2017 
520 3 |a This paper considers three crucial issues in processing scaled down image, the representation of partial image, similarity measure and domain adaptation. Two Gaussian mixture model based algorithms are proposed to effectively preserve image details and avoids image degradation. Multiple partial images are clustered separately through Gaussian mixture model clustering with a scan and select procedure to enhance the inclusion of small image details. The local image features, represented by maximum likelihood estimates of the mixture components, are classified by using the modified Bayes factor (MBF) as a similarity measure. The detection of novel local features from MBF will suggest domain adaptation, which is changing the number of components of the Gaussian mixture model. The performance of the proposed algorithms are evaluated with simulated data and real images and it is shown to perform much better than existing Gaussian mixture model based algorithms in reproducing images with higher structural similarity index. © 2017 Leong, Ong. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
650 0 4 |a algorithm 
650 0 4 |a Algorithms 
650 0 4 |a Bayes theorem 
650 0 4 |a Bayes Theorem 
650 0 4 |a cluster analysis 
650 0 4 |a Cluster Analysis 
650 0 4 |a degradation 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a image processing 
650 0 4 |a Image Processing, Computer-Assisted 
650 0 4 |a maximum likelihood method 
650 0 4 |a microscopy 
650 0 4 |a Microscopy 
650 0 4 |a Models, Statistical 
650 0 4 |a multimodal imaging 
650 0 4 |a Multimodal Imaging 
650 0 4 |a normal distribution 
650 0 4 |a Normal Distribution 
650 0 4 |a photography 
650 0 4 |a Photography 
650 0 4 |a procedures 
650 0 4 |a simulation 
650 0 4 |a statistical model 
650 0 4 |a statistics and numerical data 
700 1 0 |a Leong, S.H.  |e author 
700 1 0 |a Ong, S.H.  |e author 
773 |t PLoS ONE  |x 19326203 (ISSN)  |g 12 7 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/journal.pone.0180307 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85022343921&doi=10.1371%2fjournal.pone.0180307&partnerID=40&md5=c2f81639f064970290f945f7432472ec