The quantitative basis for the redistribution of immobile bacterial lipoproteins to division septa

The spatial localisation of proteins is critical for most cellular function. In bacteria, this is typically achieved through capture by established landmark proteins. However, this requires that the protein is diffusive on the appropriate timescale. It is therefore unknown how the localisation of ef...

Full description

Bibliographic Details
Main Authors: Connolley, L. (Author), Kleanthous, C. (Author), Murray, S.M (Author), Szczepaniak, J. (Author)
Format: Article
Language:English
Published: Public Library of Science 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03776nam a2200721Ia 4500
001 10.1371-journal.pcbi.1009756
008 220427s2021 CNT 000 0 und d
020 |a 1553734X (ISSN) 
245 1 0 |a The quantitative basis for the redistribution of immobile bacterial lipoproteins to division septa 
260 0 |b Public Library of Science  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/journal.pcbi.1009756 
520 3 |a The spatial localisation of proteins is critical for most cellular function. In bacteria, this is typically achieved through capture by established landmark proteins. However, this requires that the protein is diffusive on the appropriate timescale. It is therefore unknown how the localisation of effectively immobile proteins is achieved. Here, we investigate the localisation to the division site of the slowly diffusing lipoprotein Pal, which anchors the outer membrane to the cell wall of Gram-negative bacteria. While the proton motive force-linked TolQRAB system is known to be required for this repositioning, the underlying mechanism is unresolved, especially given the very low mobility of Pal. We present a quantitative, mathematical model for Pal relocalisation in which dissociation of TolB-Pal complexes, powered by the proton motive force across the inner membrane, leads to the net transport of Pal along the outer membrane and its deposition at the division septum. We fit the model to experimental measurements of protein mobility and successfully test its predictions experimentally against mutant phenotypes. Our model not only explains a key aspect of cell division in Gram-negative bacteria, but also presents a physical mechanism for the transport of low-mobility proteins that may be applicable to multi-membrane organelles, such as mitochondria and chloroplasts. Copyright: © 2021 Connolley et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
650 0 4 |a Article 
650 0 4 |a bacterial cell wall 
650 0 4 |a bacterial outer membrane 
650 0 4 |a Bacterial Outer Membrane Proteins 
650 0 4 |a bacterial protein 
650 0 4 |a cell division 
650 0 4 |a Cell Division 
650 0 4 |a cell wall 
650 0 4 |a Cell Wall 
650 0 4 |a chemistry 
650 0 4 |a controlled study 
650 0 4 |a cytology 
650 0 4 |a dissociation 
650 0 4 |a Escherichia coli 
650 0 4 |a Escherichia coli 
650 0 4 |a Escherichia coli protein 
650 0 4 |a Escherichia coli Proteins 
650 0 4 |a ExcC protein, E coli 
650 0 4 |a inner membrane 
650 0 4 |a intracellular space 
650 0 4 |a Intracellular Space 
650 0 4 |a lipoprotein 
650 0 4 |a Lipoproteins 
650 0 4 |a mathematical model 
650 0 4 |a membrane transport 
650 0 4 |a metabolism 
650 0 4 |a mutant 
650 0 4 |a outer membrane protein 
650 0 4 |a peptidoglycan 
650 0 4 |a Peptidoglycan 
650 0 4 |a periplasmic protein 
650 0 4 |a Periplasmic Proteins 
650 0 4 |a phenotype 
650 0 4 |a physiology 
650 0 4 |a prediction 
650 0 4 |a protein binding 
650 0 4 |a Protein Binding 
650 0 4 |a protein localization 
650 0 4 |a protein Pal 
650 0 4 |a protein TolB 
650 0 4 |a protein transport 
650 0 4 |a Protein Transport 
650 0 4 |a proton motive force 
650 0 4 |a quantitative analysis 
650 0 4 |a tolB protein, E coli 
650 0 4 |a unclassified drug 
700 1 |a Connolley, L.  |e author 
700 1 |a Kleanthous, C.  |e author 
700 1 |a Murray, S.M.  |e author 
700 1 |a Szczepaniak, J.  |e author 
773 |t PLoS Computational Biology