Systematic evaluation of NIPT aneuploidy detection software tools with clinically validated NIPT samples

Non-invasive prenatal testing (NIPT) is a powerful screening method for fetal aneuploidy detection, relying on laboratory and computational analysis of cell-free DNA. Although several published computational NIPT analysis tools are available, no prior comprehensive, head-to-head accuracy comparison...

Full description

Bibliographic Details
Main Authors: Ardeshirdavani, A. (Author), Bayindir, B. (Author), Krjutškov, K. (Author), Palta, P. (Author), Paluoja, P. (Author), Salumets, A. (Author), Teder, H. (Author), Vermeesch, J. (Author)
Format: Article
Language:English
Published: Public Library of Science 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03423nam a2200625Ia 4500
001 10.1371-journal.pcbi.1009684
008 220427s2021 CNT 000 0 und d
020 |a 1553734X (ISSN) 
245 1 0 |a Systematic evaluation of NIPT aneuploidy detection software tools with clinically validated NIPT samples 
260 0 |b Public Library of Science  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/journal.pcbi.1009684 
520 3 |a Non-invasive prenatal testing (NIPT) is a powerful screening method for fetal aneuploidy detection, relying on laboratory and computational analysis of cell-free DNA. Although several published computational NIPT analysis tools are available, no prior comprehensive, head-to-head accuracy comparison of the various tools has been published. Here, we compared the outcome accuracies obtained for clinically validated samples with five commonly used computational NIPT aneuploidy analysis tools (WisecondorX, NIPTeR, NIPTmer, RAPIDR, and GIPseq) across various sequencing depths (coverage) and fetal DNA fractions. The sample set included cases of fetal trisomy 21 (Down syndrome), trisomy 18 (Edwards syndrome), and trisomy 13 (Patau syndrome). We determined that all of the compared tools were considerably affected by lower sequencing depths, such that increasing proportions of undetected trisomy cases (false negatives) were observed as the sequencing depth decreased. We summarised our benchmarking results and highlighted the advantages and disadvantages of each computational NIPT software. To conclude, trisomy detection for lower coverage NIPT samples (e.g. 2.5M reads per sample) is technically possible but can, with some NIPT tools, produce troubling rates of inaccurate trisomy detection, especially in low-FF samples. © 2021 Paluoja et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
650 0 4 |a aneuploidy 
650 0 4 |a Aneuploidy 
650 0 4 |a Article 
650 0 4 |a biology 
650 0 4 |a Computational Biology 
650 0 4 |a computer assisted diagnosis 
650 0 4 |a controlled study 
650 0 4 |a Diagnosis, Computer-Assisted 
650 0 4 |a diagnostic accuracy 
650 0 4 |a diagnostic test accuracy study 
650 0 4 |a diagnostic value 
650 0 4 |a Down syndrome 
650 0 4 |a Edwards syndrome 
650 0 4 |a false negative result 
650 0 4 |a female 
650 0 4 |a Female 
650 0 4 |a fetus 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a major clinical study 
650 0 4 |a male 
650 0 4 |a mathematical model 
650 0 4 |a noninvasive prenatal testing 
650 0 4 |a Noninvasive Prenatal Testing 
650 0 4 |a pregnancy 
650 0 4 |a Pregnancy 
650 0 4 |a procedures 
650 0 4 |a software 
650 0 4 |a Software 
650 0 4 |a trisomy 13 
650 0 4 |a trisomy 18 
650 0 4 |a trisomy 21 
650 0 4 |a whole genome sequencing 
650 0 4 |a Whole Genome Sequencing 
700 1 |a Ardeshirdavani, A.  |e author 
700 1 |a Bayindir, B.  |e author 
700 1 |a Krjutškov, K.  |e author 
700 1 |a Palta, P.  |e author 
700 1 |a Paluoja, P.  |e author 
700 1 |a Salumets, A.  |e author 
700 1 |a Teder, H.  |e author 
700 1 |a Vermeesch, J.  |e author 
773 |t PLoS Computational Biology