Repeated measures ASCA+ for analysis of longitudinal intervention studies with multivariate outcome data

Longitudinal intervention studies with repeated measurements over time are an important type of experimental design in biomedical research. Due to the advent of "omics"-sciences (genomics, transcriptomics, proteomics, metabolomics), longitudinal studies generate increasingly multivariate o...

Full description

Bibliographic Details
Main Authors: Giskeødegård, G.F (Author), Madssen, T.S (Author), Smilde, A.K (Author), Westerhuis, J.A (Author)
Format: Article
Language:English
Published: Public Library of Science 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02869nam a2200505Ia 4500
001 10.1371-journal.pcbi.1009585
008 220427s2021 CNT 000 0 und d
020 |a 1553734X (ISSN) 
245 1 0 |a Repeated measures ASCA+ for analysis of longitudinal intervention studies with multivariate outcome data 
260 0 |b Public Library of Science  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/journal.pcbi.1009585 
520 3 |a Longitudinal intervention studies with repeated measurements over time are an important type of experimental design in biomedical research. Due to the advent of "omics"-sciences (genomics, transcriptomics, proteomics, metabolomics), longitudinal studies generate increasingly multivariate outcome data. Analysis of such data must take both the longitudinal intervention structure and multivariate nature of the data into account. The ASCA +-framework combines general linear models with principal component analysis and can be used to separate and visualize the multivariate effect of different experimental factors. However, this methodology has not yet been developed for the more complex designs often found in longitudinal intervention studies, which may be unbalanced, involve randomized interventions, and have substantial missing data. Here we describe a new methodology, repeated measures ASCA+ (RM-ASCA+), and show how it can be used to model metabolic changes over time, and compare metabolic changes between groups, in both randomized and non-randomized intervention studies. Tools for both visualization and model validation are discussed. This approach can facilitate easier interpretation of data from longitudinal clinical trials with multivariate outcomes. Copyright © 2021 Madssen et al. 
650 0 4 |a Antineoplastic Agents, Immunological 
650 0 4 |a article 
650 0 4 |a bariatric surgery 
650 0 4 |a Bariatric Surgery 
650 0 4 |a bevacizumab 
650 0 4 |a Bevacizumab 
650 0 4 |a Breast Neoplasms 
650 0 4 |a breast tumor 
650 0 4 |a Data Interpretation, Statistical 
650 0 4 |a female 
650 0 4 |a Female 
650 0 4 |a genomics 
650 0 4 |a Genomics 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a immunological antineoplastic agent 
650 0 4 |a intervention study 
650 0 4 |a Longitudinal Studies 
650 0 4 |a longitudinal study 
650 0 4 |a metabolomics 
650 0 4 |a Metabolomics 
650 0 4 |a principal component analysis 
650 0 4 |a proteomics 
650 0 4 |a Proteomics 
650 0 4 |a randomized controlled trial (topic) 
650 0 4 |a reproducibility 
650 0 4 |a Reproducibility of Results 
650 0 4 |a statistical analysis 
700 1 |a Giskeødegård, G.F.  |e author 
700 1 |a Madssen, T.S.  |e author 
700 1 |a Smilde, A.K.  |e author 
700 1 |a Westerhuis, J.A.  |e author 
773 |t PLoS Computational Biology