Programming cell growth into different cluster shapes using diffusible signals

Advances in genetic engineering technologies have allowed the construction of artificial genetic circuits, which have been used to generate spatial patterns of differential gene expression. However, the question of how cells can be programmed, and how complex the rules need to be, to achieve a desir...

Full description

Bibliographic Details
Main Authors: Brenner, M.P (Author), Guo, Y. (Author), Nitzan, M. (Author)
Format: Article
Language:English
Published: Public Library of Science 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03085nam a2200661Ia 4500
001 10.1371-journal.pcbi.1009576
008 220427s2021 CNT 000 0 und d
020 |a 1553734X (ISSN) 
245 1 0 |a Programming cell growth into different cluster shapes using diffusible signals 
260 0 |b Public Library of Science  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/journal.pcbi.1009576 
520 3 |a Advances in genetic engineering technologies have allowed the construction of artificial genetic circuits, which have been used to generate spatial patterns of differential gene expression. However, the question of how cells can be programmed, and how complex the rules need to be, to achieve a desired tissue morphology has received less attention. Here, we address these questions by developing a mathematical model to study how cells can collectively grow into clusters with different structural morphologies by secreting diffusible signals that can influence cellular growth rates. We formulate how growth regulators can be used to control the formation of cellular protrusions and how the range of achievable structures scales with the number of distinct signals. We show that a single growth inhibitor is insufficient for the formation of multiple protrusions but may be achieved with multiple growth inhibitors, and that other types of signals can regulate the shape of protrusion tips. These examples illustrate how our approach could potentially be used to guide the design of regulatory circuits for achieving a desired target structure. Copyright © 2021 Guo et al. 
650 0 4 |a animal 
650 0 4 |a Animals 
650 0 4 |a Article 
650 0 4 |a biological model 
650 0 4 |a biology 
650 0 4 |a cell aggregation 
650 0 4 |a Cell Aggregation 
650 0 4 |a cell communication 
650 0 4 |a Cell Communication 
650 0 4 |a cell growth 
650 0 4 |a cell migration 
650 0 4 |a cell proliferation 
650 0 4 |a Cell Proliferation 
650 0 4 |a cell reprogramming technique 
650 0 4 |a cell shape 
650 0 4 |a cell shape 
650 0 4 |a Cell Shape 
650 0 4 |a cell structure 
650 0 4 |a cell surface 
650 0 4 |a Cell Surface Extensions 
650 0 4 |a Cellular Reprogramming Techniques 
650 0 4 |a Computational Biology 
650 0 4 |a computer simulation 
650 0 4 |a Computer Simulation 
650 0 4 |a gene regulatory network 
650 0 4 |a Gene Regulatory Networks 
650 0 4 |a genetic engineering 
650 0 4 |a Genetic Engineering 
650 0 4 |a growth inhibitor 
650 0 4 |a Growth Inhibitors 
650 0 4 |a growth rate 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a mathematical model 
650 0 4 |a Models, Biological 
650 0 4 |a morphogenesis 
650 0 4 |a Morphogenesis 
650 0 4 |a physiology 
650 0 4 |a procedures 
650 0 4 |a signal transduction 
650 0 4 |a synthetic biology 
650 0 4 |a Synthetic Biology 
700 1 |a Brenner, M.P.  |e author 
700 1 |a Guo, Y.  |e author 
700 1 |a Nitzan, M.  |e author 
773 |t PLoS Computational Biology