Radio-frequency exposure of the yellow fever mosquito (A. Aegypti) from 2 to 240 GHz

Fifth generation networks (5G) will be associated with a partial shift to higher carrier frequencies, including wavelengths of insects. This may lead to higher absorption of radio frequency (RF) electromagnetic fields (EMF) by insects and could cause dielectric heating. The yellow fever mosquito (Ae...

Full description

Bibliographic Details
Main Authors: Aminzadeh, R. (Author), Boone, M.N (Author), de Borre, E. (Author), Hashemizadeh, S. (Author), Joseph, W. (Author), Josipovic, I. (Author), Kühn, S. (Author), Kuster, N. (Author), Müller, P. (Author), Thielens, A. (Author)
Format: Article
Language:English
Published: Public Library of Science 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03705nam a2200649Ia 4500
001 10.1371-journal.pcbi.1009460
008 220427s2021 CNT 000 0 und d
020 |a 1553734X (ISSN) 
245 1 0 |a Radio-frequency exposure of the yellow fever mosquito (A. Aegypti) from 2 to 240 GHz 
260 0 |b Public Library of Science  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/journal.pcbi.1009460 
520 3 |a Fifth generation networks (5G) will be associated with a partial shift to higher carrier frequencies, including wavelengths of insects. This may lead to higher absorption of radio frequency (RF) electromagnetic fields (EMF) by insects and could cause dielectric heating. The yellow fever mosquito (Aedes aegypti), a vector for diseases such as yellow and dengue fever, favors warm climates. Being exposed to higher frequency RF EMFs causing possible dielectric heating, could have an influence on behavior, physiology and morphology, and could be a possible factor for introduction of the species in regions where the yellow fever mosquito normally does not appear. In this study, the influence of far field RF exposure on A. aegypti was examined between 2 and 240 GHz. Using Finite Difference Time Domain (FDTD) simulations, the distribution of the electric field in and around the insect and the absorbed RF power were found for six different mosquito models (three male, three female). The 3D models were created from micro-CT scans of real mosquitoes. The dielectric properties used in the simulation were measured from a mixture of homogenized A. aegypti. For a given incident RF power, the absorption increases with increasing frequency between 2 and 90 GHz with a maximum between 90 and 240 GHz. The absorption was maximal in the region where the wavelength matches the size of the mosquito. For a same incident field strength, the power absorption by the mosquito is 16 times higher at 60 GHz than at 6 GHz. The higher absorption of RF power by future technologies can result in dielectric heating and potentially influence the biology of this mosquito. Copyright: © 2021 De Borre et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
650 0 4 |a absorption 
650 0 4 |a Aedes 
650 0 4 |a Aedes 
650 0 4 |a Aedes aegypti 
650 0 4 |a animal 
650 0 4 |a animal experiment 
650 0 4 |a Animals 
650 0 4 |a Article 
650 0 4 |a climate 
650 0 4 |a dengue 
650 0 4 |a electric field 
650 0 4 |a electromagnetism 
650 0 4 |a female 
650 0 4 |a Female 
650 0 4 |a heat 
650 0 4 |a heating 
650 0 4 |a Hot Temperature 
650 0 4 |a incidence 
650 0 4 |a male 
650 0 4 |a Male 
650 0 4 |a micro-computed tomography 
650 0 4 |a mosquito vector 
650 0 4 |a Mosquito Vectors 
650 0 4 |a nonhuman 
650 0 4 |a physiology 
650 0 4 |a radiation exposure 
650 0 4 |a radiation field 
650 0 4 |a radiation response 
650 0 4 |a Radio Waves 
650 0 4 |a radiofrequency 
650 0 4 |a radiofrequency radiation 
650 0 4 |a simulation 
650 0 4 |a yellow fever 
650 0 4 |a Yellow Fever 
700 1 |a Aminzadeh, R.  |e author 
700 1 |a Boone, M.N.  |e author 
700 1 |a de Borre, E.  |e author 
700 1 |a Hashemizadeh, S.  |e author 
700 1 |a Joseph, W.  |e author 
700 1 |a Josipovic, I.  |e author 
700 1 |a Kühn, S.  |e author 
700 1 |a Kuster, N.  |e author 
700 1 |a Müller, P.  |e author 
700 1 |a Thielens, A.  |e author 
773 |t PLoS Computational Biology