Segmentation-Less, automated, vascular vectorization

Recent advances in two-photon fluorescence microscopy (2PM) have allowed large scale imaging and analysis of blood vessel networks in living mice. However, extracting network graphs and vector representations for the dense capillary bed remains a bottleneck in many applications. Vascular vectorizati...

Full description

Bibliographic Details
Main Authors: Dunn, A.K (Author), Hassan, A.M (Author), Jones, T.A (Author), Mihelic, S.A (Author), Sikora, W.A (Author), Williamson, M.R (Author)
Format: Article
Language:English
Published: Public Library of Science 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04236nam a2200685Ia 4500
001 10.1371-journal.pcbi.1009451
008 220427s2021 CNT 000 0 und d
020 |a 1553734X (ISSN) 
245 1 0 |a Segmentation-Less, automated, vascular vectorization 
260 0 |b Public Library of Science  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/journal.pcbi.1009451 
520 3 |a Recent advances in two-photon fluorescence microscopy (2PM) have allowed large scale imaging and analysis of blood vessel networks in living mice. However, extracting network graphs and vector representations for the dense capillary bed remains a bottleneck in many applications. Vascular vectorization is algorithmically difficult because blood vessels have many shapes and sizes, the samples are often unevenly illuminated, and large image volumes are required to achieve good statistical power. State-of-the-art, three-dimensional, vascular vectorization approaches often require a segmented (binary) image, relying on manual or supervised-machine annotation. Therefore, voxel-by-voxel image segmentation is biased by the human annotator or trainer. Furthermore, segmented images oftentimes require remedial morphological filtering before skeletonization or vectorization. To address these limitations, we present a vectorization method to extract vascular objects directly from unsegmented images without the need for machine learning or training. The Segmentation-Less, Automated, Vascular Vectorization (SLAVV) source code in MATLAB is openly available on GitHub. This novel method uses simple models of vascular anatomy, efficient linear filtering, and vector extraction algorithms to remove the image segmentation requirement, replacing it with manual or automated vector classification. Semi-automated SLAVV is demonstrated on three in vivo 2PM image volumes of microvascular networks (capillaries, arterioles and venules) in the mouse cortex. Vectorization performance is proven robust to the choice of plasma- or endothelial-labeled contrast, and processing costs are shown to scale with input image volume. Fully-automated SLAVV performance is evaluated on simulated 2PM images of varying quality all based on the large (1.4×0.9×0.6 mm3 and 1.6×108 voxel) input image. Vascular statistics of interest (e.g. volume fraction, surface area density) calculated from automatically vectorized images show greater robustness to image quality than those calculated from intensity-thresholded images. Copyright: © 2021 Mihelic et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
650 0 4 |a algorithm 
650 0 4 |a animal 
650 0 4 |a animal experiment 
650 0 4 |a animal tissue 
650 0 4 |a Animals 
650 0 4 |a arteriole 
650 0 4 |a article 
650 0 4 |a biology 
650 0 4 |a brain 
650 0 4 |a Brain 
650 0 4 |a brain circulation 
650 0 4 |a capillary 
650 0 4 |a Cerebrovascular Circulation 
650 0 4 |a Computational Biology 
650 0 4 |a controlled study 
650 0 4 |a data analysis software 
650 0 4 |a diagnostic imaging 
650 0 4 |a endothelium 
650 0 4 |a extraction 
650 0 4 |a filtration 
650 0 4 |a fluorescence microscopy 
650 0 4 |a human 
650 0 4 |a image processing 
650 0 4 |a Image Processing, Computer-Assisted 
650 0 4 |a image quality 
650 0 4 |a image segmentation 
650 0 4 |a in vivo study 
650 0 4 |a machine learning 
650 0 4 |a male 
650 0 4 |a Mice 
650 0 4 |a Microscopy, Fluorescence 
650 0 4 |a microvasculature 
650 0 4 |a Microvessels 
650 0 4 |a mouse 
650 0 4 |a nonhuman 
650 0 4 |a physiology 
650 0 4 |a procedures 
650 0 4 |a simulation 
650 0 4 |a surface area 
650 0 4 |a vascularization 
650 0 4 |a venule 
700 1 |a Dunn, A.K.  |e author 
700 1 |a Hassan, A.M.  |e author 
700 1 |a Jones, T.A.  |e author 
700 1 |a Mihelic, S.A.  |e author 
700 1 |a Sikora, W.A.  |e author 
700 1 |a Williamson, M.R.  |e author 
773 |t PLoS Computational Biology