Multiscale model of defective interfering particle replication for influenza A virus infection in animal cell culture

Cell culture-derived defective interfering particles (DIPs) are considered for antiviral therapy due to their ability to inhibit influenza A virus (IAV) production. DIPs contain a large internal deletion in one of their eight viral RNAs (vRNAs) rendering them replication-incompetent. However, they c...

Full description

Bibliographic Details
Main Authors: Hein, M.D (Author), Kupke, S.Y (Author), Pelz, L. (Author), Reichl, U. (Author), Rüdiger, D. (Author)
Format: Article
Language:English
Published: Public Library of Science 2021
Subjects:
dog
Online Access:View Fulltext in Publisher
LEADER 04786nam a2200853Ia 4500
001 10.1371-journal.pcbi.1009357
008 220427s2021 CNT 000 0 und d
020 |a 1553734X (ISSN) 
245 1 0 |a Multiscale model of defective interfering particle replication for influenza A virus infection in animal cell culture 
260 0 |b Public Library of Science  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/journal.pcbi.1009357 
520 3 |a Cell culture-derived defective interfering particles (DIPs) are considered for antiviral therapy due to their ability to inhibit influenza A virus (IAV) production. DIPs contain a large internal deletion in one of their eight viral RNAs (vRNAs) rendering them replication-incompetent. However, they can propagate alongside their homologous standard virus (STV) during infection in a competition for cellular and viral resources. So far, experimental and modeling studies for IAV have focused on either the intracellular or the cell population level when investigating the interaction of STVs and DIPs. To examine these levels simultaneously, we conducted a series of experiments using highly different multiplicities of infections for STVs and DIPs to characterize virus replication in Madin-Darby Canine Kidney suspension cells. At several time points post infection, we quantified virus titers, viable cell concentration, virus-induced apoptosis using imaging flow cytometry, and intracellular levels of vRNA and viral mRNA using real-time reverse transcription qPCR. Based on the obtained data, we developed a mathematical multiscale model of STV and DIP co-infection that describes dynamics closely for all scenarios with a single set of parameters. We show that applying high DIP concentrations can shut down STV propagation completely and prevent virus-induced apoptosis. Interestingly, the three observed viral mRNAs (full-length segment 1 and 5, defective interfering segment 1) accumulated to vastly different levels suggesting the interplay between an internal regulation mechanism and a growth advantage for shorter viral RNAs. Furthermore, model simulations predict that the concentration of DIPs should be at least 10000 times higher than that of STVs to prevent the spread of IAV. Ultimately, the model presented here supports a comprehensive understanding of the interactions between STVs and DIPs during co-infection providing an ideal platform for the prediction and optimization of vaccine manufacturing as well as DIP production for therapeutic use. Copyright: © 2021 Rüdiger et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
650 0 4 |a animal 
650 0 4 |a animal cell 
650 0 4 |a animal cell culture 
650 0 4 |a Animals 
650 0 4 |a Antiviral Agents 
650 0 4 |a antiviral therapy 
650 0 4 |a antivirus agent 
650 0 4 |a apoptosis 
650 0 4 |a Article 
650 0 4 |a biological model 
650 0 4 |a cell culture technique 
650 0 4 |a Cell Culture Techniques 
650 0 4 |a centrifugation 
650 0 4 |a chemistry 
650 0 4 |a coinfection 
650 0 4 |a controlled study 
650 0 4 |a defective virus 
650 0 4 |a Defective Viruses 
650 0 4 |a dog 
650 0 4 |a Dogs 
650 0 4 |a dynamics 
650 0 4 |a flow cytometry 
650 0 4 |a gene deletion 
650 0 4 |a genetics 
650 0 4 |a glutamine 
650 0 4 |a influenza A 
650 0 4 |a Influenza A virus 
650 0 4 |a Influenza A virus 
650 0 4 |a Influenza A virus 
650 0 4 |a Madin Darby Canine Kidney Cells 
650 0 4 |a mathematical model 
650 0 4 |a MDCK cell line 
650 0 4 |a Models, Biological 
650 0 4 |a nonhuman 
650 0 4 |a Orthomyxoviridae Infections 
650 0 4 |a orthomyxovirus infection 
650 0 4 |a pathogenicity 
650 0 4 |a physiology 
650 0 4 |a plaque forming unit 
650 0 4 |a prediction 
650 0 4 |a real time reverse transcription polymerase chain reaction 
650 0 4 |a ribonucleoprotein 
650 0 4 |a RNA directed RNA polymerase 
650 0 4 |a RNA, Viral 
650 0 4 |a sialidase 
650 0 4 |a simulation 
650 0 4 |a viral protein 
650 0 4 |a virology 
650 0 4 |a virus infection 
650 0 4 |a virus particle 
650 0 4 |a virus release 
650 0 4 |a virus replication 
650 0 4 |a virus replication 
650 0 4 |a Virus Replication 
650 0 4 |a virus RNA 
650 0 4 |a virus transmission 
700 1 |a Hein, M.D.  |e author 
700 1 |a Kupke, S.Y.  |e author 
700 1 |a Pelz, L.  |e author 
700 1 |a Reichl, U.  |e author 
700 1 |a Rüdiger, D.  |e author 
773 |t PLoS Computational Biology