An integrated framework for building trustworthy data-driven epidemiological models: Application to the COVID-19 outbreak in New York City

Epidemiological models can provide the dynamic evolution of a pandemic but they are based on many assumptions and parameters that have to be adjusted over the time when the pandemic lasts. However, often the available data are not sufficient to identify the model parameters and hence infer the unobs...

Full description

Bibliographic Details
Main Authors: Karniadakis, G. (Author), Lin, G. (Author), Ponce, J. (Author), Zhang, S. (Author), Zhang, Z. (Author)
Format: Article
Language:English
Published: Public Library of Science 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03233nam a2200565Ia 4500
001 10.1371-journal.pcbi.1009334
008 220427s2021 CNT 000 0 und d
020 |a 1553734X (ISSN) 
245 1 0 |a An integrated framework for building trustworthy data-driven epidemiological models: Application to the COVID-19 outbreak in New York City 
260 0 |b Public Library of Science  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/journal.pcbi.1009334 
520 3 |a Epidemiological models can provide the dynamic evolution of a pandemic but they are based on many assumptions and parameters that have to be adjusted over the time when the pandemic lasts. However, often the available data are not sufficient to identify the model parameters and hence infer the unobserved dynamics. Here, we develop a general framework for building a trustworthy data-driven epidemiological model, consisting of a workflow that integrates data acquisition and event timeline, model development, identifiability analysis, sensitivity analysis, model calibration, model robustness analysis, and projection with uncertainties in different scenarios. In particular, we apply this framework to propose a modified susceptible–exposed–infectious–recovered (SEIR) model, including new compartments and model vaccination in order to project the transmission dynamics of COVID-19 in New York City (NYC). We find that we can uniquely estimate the model parameters and accurately project the daily new infection cases, hospitalizations, and deaths, in agreement with the available data from NYC’s government’s website. In addition, we employ the calibrated data-driven model to study the effects of vaccination and timing of reopening indoor dining in NYC. Copyright: © 2021 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
650 0 4 |a Article 
650 0 4 |a biology 
650 0 4 |a calibration 
650 0 4 |a communicable disease control 
650 0 4 |a Communicable Disease Control 
650 0 4 |a Computational Biology 
650 0 4 |a coronavirus disease 2019 
650 0 4 |a COVID-19 
650 0 4 |a Disease Outbreaks 
650 0 4 |a disease transmission 
650 0 4 |a epidemic 
650 0 4 |a epidemiology 
650 0 4 |a government 
650 0 4 |a health care system 
650 0 4 |a hospitalization 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a mathematical analysis 
650 0 4 |a Models, Statistical 
650 0 4 |a mortality rate 
650 0 4 |a New York 
650 0 4 |a New York City 
650 0 4 |a population size 
650 0 4 |a prevention and control 
650 0 4 |a SARS-CoV-2 
650 0 4 |a sensitivity analysis 
650 0 4 |a statistical model 
650 0 4 |a time series analysis 
650 0 4 |a uncertainty 
650 0 4 |a vaccination 
650 0 4 |a virus transmission 
650 0 4 |a workflow 
700 1 |a Karniadakis, G.  |e author 
700 1 |a Lin, G.  |e author 
700 1 |a Ponce, J.  |e author 
700 1 |a Zhang, S.  |e author 
700 1 |a Zhang, Z.  |e author 
773 |t PLoS Computational Biology