Wavelength dimension in waveguide-based photonic reservoir computing

Existing work on coherent photonic reservoir computing (PRC) mostly concentrates on single-wavelength solutions. In this paper, we discuss the opportunities and challenges related to exploiting the wavelength dimension in integrated photonic reservoir computing systems. Different strategies are pres...

Full description

Bibliographic Details
Main Authors: Bienstman, P. (Author), Dambre, J. (Author), Gooskens, E. (Author), Laporte, F. (Author), Ma, C. (Author), Sackesyn, S. (Author)
Format: Article
Language:English
Published: NLM (Medline) 2022
Online Access:View Fulltext in Publisher
LEADER 01402nam a2200193Ia 4500
001 10.1364-OE.455774
008 220510s2022 CNT 000 0 und d
020 |a 10944087 (ISSN) 
245 1 0 |a Wavelength dimension in waveguide-based photonic reservoir computing 
260 0 |b NLM (Medline)  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1364/OE.455774 
520 3 |a Existing work on coherent photonic reservoir computing (PRC) mostly concentrates on single-wavelength solutions. In this paper, we discuss the opportunities and challenges related to exploiting the wavelength dimension in integrated photonic reservoir computing systems. Different strategies are presented to be able to process several wavelengths in parallel using the same readout. Additionally, we present multiwavelength training techniques that allow to increase the stable operating wavelength range by at least a factor of two. It is shown that a single-readout photonic reservoir system can perform with ≈0% BER on several WDM channels in parallel for bit-level tasks and nonlinear signal equalization. This even when taking manufacturing deviations and laser wavelength drift into account. 
700 1 |a Bienstman, P.  |e author 
700 1 |a Dambre, J.  |e author 
700 1 |a Gooskens, E.  |e author 
700 1 |a Laporte, F.  |e author 
700 1 |a Ma, C.  |e author 
700 1 |a Sackesyn, S.  |e author 
773 |t Optics express