Adaptive time-delayed photonic reservoir computing based on Kalman-filter training

We propose an adaptive time-delayed photonic reservoir computing (RC) structure by utilizing the Kalman filter (KF) algorithm as training approach. Two benchmark tasks, namely the Santa Fe time-series prediction and the nonlinear channel equalization, are adopted to evaluate the performance of the p...

Full description

Bibliographic Details
Main Authors: Feng, W. (Author), Jiang, N. (Author), Jin, J. (Author), Liu, S. (Author), Peng, J. (Author), Qiu, K. (Author), Zhang, Q. (Author), Zhang, Y. (Author), Zhao, A. (Author)
Format: Article
Language:English
Published: Optica Publishing Group (formerly OSA) 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02358nam a2200409Ia 4500
001 10.1364-OE.454852
008 220510s2022 CNT 000 0 und d
020 |a 10944087 (ISSN) 
245 1 0 |a Adaptive time-delayed photonic reservoir computing based on Kalman-filter training 
260 0 |b Optica Publishing Group (formerly OSA)  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1364/OE.454852 
520 3 |a We propose an adaptive time-delayed photonic reservoir computing (RC) structure by utilizing the Kalman filter (KF) algorithm as training approach. Two benchmark tasks, namely the Santa Fe time-series prediction and the nonlinear channel equalization, are adopted to evaluate the performance of the proposed RC structure. The simulation results indicate that with the contribution of adaptive KF training, the prediction and equalization performance for the benchmark tasks can be significantly enhanced, with respect to the conventional RC using a training approach based on the least-squares (LS). Moreover, by introducing a complex mask derived from a bandwidth and complexity enhanced chaotic signal into the proposed RC, the performance of prediction and equalization can be further improved. In addition, it is demonstrated that the proposed RC system can provide a better equalization performance for the parameter-variant wireless channel equalization task, compared with the conventional RC based on LS training. The work presents a potential way to realize adaptive photonic computing. © 2022 Optica Publishing Group 
650 0 4 |a Adaptive kalman filter 
650 0 4 |a Benchmarking 
650 0 4 |a Chaotic signal 
650 0 4 |a Equalizers 
650 0 4 |a Forecasting 
650 0 4 |a Kalman filter algorithms 
650 0 4 |a Kalman filters 
650 0 4 |a Least Square 
650 0 4 |a Nonlinear channels equalization 
650 0 4 |a Performance 
650 0 4 |a Photonic reservoir computing 
650 0 4 |a Reservoir Computing 
650 0 4 |a Time delay 
650 0 4 |a Time delayed 
650 0 4 |a Time series prediction 
700 1 |a Feng, W.  |e author 
700 1 |a Jiang, N.  |e author 
700 1 |a Jin, J.  |e author 
700 1 |a Liu, S.  |e author 
700 1 |a Peng, J.  |e author 
700 1 |a Qiu, K.  |e author 
700 1 |a Zhang, Q.  |e author 
700 1 |a Zhang, Y.  |e author 
700 1 |a Zhao, A.  |e author 
773 |t Optics Express