Airy-like beam-based light-sheet microscopy with improved FOV for zebrafish intracerebral hemorrhage

Airy light-sheet microscopy is rapidly gaining importance for imaging intact biological specimens because of the rapid speed, high resolution, and wide field nature of the imaging method. However, the depth of field (DOF) of the detection objective imposes limitations on the modulation transfer func...

Full description

Bibliographic Details
Main Authors: Chen, H. (Author), Liu, P. (Author), Liu, X. (Author), Ming, D. (Author), Pang, M. (Author), Wang, J. (Author), Zhang, X.-D (Author)
Format: Article
Language:English
Published: NLM (Medline) 2022
Online Access:View Fulltext in Publisher
LEADER 01685nam a2200205Ia 4500
001 10.1364-OE.451919
008 220510s2022 CNT 000 0 und d
020 |a 10944087 (ISSN) 
245 1 0 |a Airy-like beam-based light-sheet microscopy with improved FOV for zebrafish intracerebral hemorrhage 
260 0 |b NLM (Medline)  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1364/OE.451919 
520 3 |a Airy light-sheet microscopy is rapidly gaining importance for imaging intact biological specimens because of the rapid speed, high resolution, and wide field nature of the imaging method. However, the depth of field (DOF) of the detection objective imposes limitations on the modulation transfer function (MTF) of the light sheet, which in turn affects the size of the field of view (FOV). Here we present an optimized phase modulation model, based on 'Airy-like' beam family, to stretch the curved lobes, which brings a wider FOV while maintaining high resolution. In addition, we further develop a planar 'Airy-like' light-sheet by two-photon excitation which can avoid the deconvolution process. We validated the new imaging method by performing a real-time monitoring of the dynamic process of cerebral hemorrhage in zebrafish larva. The proposed Airy-like beam-based light-sheet microscopy has great potential to be applied to the precise screening of cerebral hemorrhage-related drugs to help precision medicine in the future. 
700 1 |a Chen, H.  |e author 
700 1 |a Liu, P.  |e author 
700 1 |a Liu, X.  |e author 
700 1 |a Ming, D.  |e author 
700 1 |a Pang, M.  |e author 
700 1 |a Wang, J.  |e author 
700 1 |a Zhang, X.-D.  |e author 
773 |t Optics express