Group affiliation and default prediction

Using a large sample of business groups frommore than 100 countries around the world, we showthat group informationmatters for parent and subsidiary default prediction. Group firms may support each other when in financial distress. Potential group support represents an off-balance sheet asset for th...

Full description

Bibliographic Details
Main Authors: Beaver, W.H (Author), Cascino, S. (Author), Correia, M. (Author), McNichols, M.F (Author)
Format: Article
Language:English
Published: INFORMS Inst.for Operations Res.and the Management Sciences 2019
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02330nam a2200349Ia 4500
001 10.1287-mnsc.2018.3128
008 220511s2019 CNT 000 0 und d
020 |a 00251909 (ISSN) 
245 1 0 |a Group affiliation and default prediction 
260 0 |b INFORMS Inst.for Operations Res.and the Management Sciences  |c 2019 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1287/mnsc.2018.3128 
520 3 |a Using a large sample of business groups frommore than 100 countries around the world, we showthat group informationmatters for parent and subsidiary default prediction. Group firms may support each other when in financial distress. Potential group support represents an off-balance sheet asset for the receiving firm and an off-balance sheet liability for the firm offering support. We find that subsidiary information improves parent default prediction over and above group-level consolidated information possibly because intragroup exposures are netted out upon consolidation.Moreover, we document that improvements in parent default prediction decrease in the extent of parent-country financial reporting transparency, a finding that suggests that within-group information matters most when consolidated financial statements are expected to be of lower quality. We also show that parent and other group-firms' default risk exhibits predictive power for subsidiary default. Lastly, we find that within-group information explains cross-sectional variation in CDS spreads. Taken together, our findings contribute to the prior literature on default prediction and have direct relevance to investors, credit-rating agencies, and accounting regulators. © 2019 INFORMS. 
650 0 4 |a Business groups 
650 0 4 |a Consolidation 
650 0 4 |a Credit ratings 
650 0 4 |a Credit spread 
650 0 4 |a Credit spreads 
650 0 4 |a Default prediction 
650 0 4 |a Finance 
650 0 4 |a Financial distress 
650 0 4 |a Financial reporting 
650 0 4 |a Financial reporting transparency 
650 0 4 |a Financial statements 
650 0 4 |a Forecasting 
650 0 4 |a Off-balance sheets 
650 0 4 |a Predictive power 
650 0 4 |a Transparency 
700 1 |a Beaver, W.H.  |e author 
700 1 |a Cascino, S.  |e author 
700 1 |a Correia, M.  |e author 
700 1 |a McNichols, M.F.  |e author 
773 |t Management Science