Coefficient bounds for a class multivalent function defined by salagean operator
The aim of the present paper is to define a subclass of an-alytic p-valent function in the open unit disk U = {z : |z| < 1} namely S λp (A,B, b). For the class defined, we obtain the upper bounds for the Fekete Szego functional,|ap+2 - μa 2p+1|. © 2013 Academic Publications, Ltd.
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | View Fulltext in Publisher View in Scopus |
LEADER | 01068nam a2200193Ia 4500 | ||
---|---|---|---|
001 | 10.12732-ijpam.v83i3.4 | ||
008 | 220112s2013 CNT 000 0 und d | ||
020 | |a 13118080 (ISSN) | ||
245 | 1 | 0 | |a Coefficient bounds for a class multivalent function defined by salagean operator |
856 | |z View Fulltext in Publisher |u https://doi.org/10.12732/ijpam.v83i3.4 | ||
856 | |z View in Scopus |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84875045708&doi=10.12732%2fijpam.v83i3.4&partnerID=40&md5=dec981818409e97b516bb7249c513685 | ||
520 | 3 | |a The aim of the present paper is to define a subclass of an-alytic p-valent function in the open unit disk U = {z : |z| < 1} namely S λp (A,B, b). For the class defined, we obtain the upper bounds for the Fekete Szego functional,|ap+2 - μa 2p+1|. © 2013 Academic Publications, Ltd. | |
650 | 0 | 4 | |a Analytic |
650 | 0 | 4 | |a Fekete Szego functional |
650 | 0 | 4 | |a P-valent |
700 | 1 | 0 | |a Akbarally, A. |e author |
700 | 1 | 0 | |a Ismail, M. |e author |
700 | 1 | 0 | |a Soh, S.C. |e author |
773 | |t International Journal of Pure and Applied Mathematics |