Handling unexpected inputs: incorporating source-wise out-of-distribution detection into SAR-optical data fusion for scene classification

The fusion of synthetic aperture radar (SAR) and optical satellite data is widely used for deep learning based scene classification. Counter-intuitively such neural networks are still sensitive to changes in single data sources, which can lead to unexpected behavior and a significant drop in perform...

Full description

Bibliographic Details
Main Authors: Gawlikowski, J. (Author), Niebling, J. (Author), Saha, S. (Author), Zhu, X.X (Author)
Format: Article
Language:English
Published: Springer Science and Business Media Deutschland GmbH 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 02900nam a2200421Ia 4500
001 10.1186-s13634-023-01008-z
008 230529s2023 CNT 000 0 und d
020 |a 16876172 (ISSN) 
245 1 0 |a Handling unexpected inputs: incorporating source-wise out-of-distribution detection into SAR-optical data fusion for scene classification 
260 0 |b Springer Science and Business Media Deutschland GmbH  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s13634-023-01008-z 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85158987164&doi=10.1186%2fs13634-023-01008-z&partnerID=40&md5=6ea6b23a91818319786452916af35d6b 
520 3 |a The fusion of synthetic aperture radar (SAR) and optical satellite data is widely used for deep learning based scene classification. Counter-intuitively such neural networks are still sensitive to changes in single data sources, which can lead to unexpected behavior and a significant drop in performance when individual sensors fail or when clouds obscure the optical image. In this paper we incorporate source-wise out-of-distribution (OOD) detection into the fusion process at test time in order to not consider unuseful or even harmful information for the prediction. As a result, we propose a modified training procedure together with an adaptive fusion approach that weights the extracted information based on the source-wise in-distribution probabilities. We evaluate the proposed approach on the BigEarthNet multilabel scene classification data set and several additional OOD test cases as missing or damaged data, clouds, unknown classes, and coverage by snow and ice. The results show a significant improvement in robustness to different types of OOD data affecting only individual data sources. At the same time the approach maintains the classification performance of the baseline approaches compared. The code for the experiments of this paper is available on GitHub: https://github.com/JakobCode/OOD_DataFusion. © 2023, The Author(s). 
650 0 4 |a Classification (of information) 
650 0 4 |a Data fusion 
650 0 4 |a Data-source 
650 0 4 |a Deep learning 
650 0 4 |a Geometrical optics 
650 0 4 |a Missing modality 
650 0 4 |a Optical data 
650 0 4 |a Optical remote sensing 
650 0 4 |a Optical satellites 
650 0 4 |a Out-of-distribution 
650 0 4 |a Probability distributions 
650 0 4 |a Radar imaging 
650 0 4 |a Radar satellites 
650 0 4 |a Remote sensing 
650 0 4 |a Remote-sensing 
650 0 4 |a Robustness 
650 0 4 |a Satellite data 
650 0 4 |a Scene classification 
650 0 4 |a Statistical tests 
650 0 4 |a Synthetic aperture radar 
700 1 0 |a Gawlikowski, J.  |e author 
700 1 0 |a Niebling, J.  |e author 
700 1 0 |a Saha, S.  |e author 
700 1 0 |a Zhu, X.X.  |e author 
773 |t Eurasip Journal on Advances in Signal Processing